国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (1): 12-17.doi: 10.7518/gjkq.2021004
Li Xin,Li Yan,Ding Xu,Xia Boyuan,Yu Weixian()
摘要:
牙周炎是发生在牙周组织的慢性感染性疾病,其发病机制及对全身系统疾病的影响一直是学术界关注的热点问题。许多学者认为,牙周炎不仅是一种常见的口腔疾病,更是全身疾病的潜在危险因素之一,但是目前关于牙周炎诱发全身系统疾病的具体机制尚不明确,可能与牙周致病菌、炎症因子及内质网应激等有关。近年来的研究发现,内质网应激是介导细胞凋亡的重要通路之一,并且与全身疾病密切相关。有研究显示,内质网应激在牙周炎诱导全身疾病过程中存在调控作用,但是目前关于内质网应激在牙周炎影响全身疾病过程中的作用研究较少,需要进一步探索。本文就内质网应激在牙周炎影响全身系统疾病中的研究进展进行综述,旨在探究牙周炎和全身系统疾病的内在联系,以期为牙周炎与其相关全身系统疾病的防治提供新的思路。
中图分类号:
[1] |
Gundamaraju R, Vemuri R, Chong WC , et al. Bilirubin attenuates ER stress-mediated inflammation, escalates apoptosis and reduces proliferation in the LS174T colonic epithelial cell line[J]. Int J Med Sci, 2019,16(1):135-144.
doi: 10.7150/ijms.29134 pmid: 30662337 |
[2] |
Pan WY, Wang QX, Chen QM . The cytokine network involved in the host immune response to periodontitis[J]. Int J Oral Sci, 2019,11(3):30.
doi: 10.1038/s41368-019-0064-z pmid: 31685798 |
[3] |
Ishida N, Ishihara Y, Ishida K , et al. Periodontitis induced by bacterial infection exacerbates features of Alzheimer s disease in transgenic mice[J]. NPJ Aging Mech Dis, 2017,3:15.
doi: 10.1038/s41514-017-0015-x pmid: 29134111 |
[4] |
Mendonça DD, Furtado MV, Sarmento RA , et al. Periodontitis and tooth loss have negative impact on dietary intake: a cross-sectional study with stable co-ronary artery disease patients[J]. J Periodontol, 2019,90(10):1096-1105.
doi: 10.1002/JPER.19-0036 pmid: 31049952 |
[5] |
Nascimento GG, Leite FRM, Vestergaard P , et al. Does diabetes increase the risk of periodontitis? A systematic review and Meta-regression analysis of longitudinal prospective studies[J]. Acta Diabetol, 2018,55(7):653-667.
doi: 10.1007/s00592-018-1120-4 pmid: 29502214 |
[6] |
Aoyama N, Suzuki JI, Kumagai H , et al. Specific periodontopathic bacterial infection affects hypertension in male cardiovascular disease patients[J]. Heart Vessels, 2018,33(2):198-204.
doi: 10.1007/s00380-017-1042-z pmid: 28803419 |
[7] |
Wangerin C, Pink C, Endlich K , et al. Long-term association of periodontitis with decreased kidney fun-ction[J]. Am J Kidney Dis, 2019,73(4):513-524.
doi: 10.1053/j.ajkd.2018.10.013 pmid: 30704881 |
[8] |
Cueno ME, Ochiai K . Gingival periodontal disease (PD) level-butyric acid affects the systemic blood and brain organ: insights into the systemic inflammation of periodontal disease[J]. Front Immunol, 2018,9:1158.
doi: 10.3389/fimmu.2018.01158 pmid: 29915575 |
[9] |
Xu YM, Melo-Cardenas J, Zhang YN , et al. The E3 ligase Hrd1 stabilizes Tregs by antagonizing inflammatory cytokine-induced ER stress response[J]. JCI Insight, 2019,4(5):121887.
doi: 10.1172/jci.insight.121887 pmid: 30843874 |
[10] |
Ochoa CD, Wu RF, Terada LS . ROS signaling and ER stress in cardiovascular disease[J]. Mol Aspects Med, 2018,63:18-29.
doi: 10.1016/j.mam.2018.03.002 pmid: 29559224 |
[11] |
Chipurupalli S, Kannan E, Tergaonkar V , et al. Hypoxia induced ER stress response as an adaptive me-chanism in cancer[J]. Int J Mol Sci, 2019,20(3):E749.
doi: 10.3390/ijms20030749 pmid: 30754624 |
[12] |
Woo CW, Cui DY, Arellano J , et al. Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling[J]. Nat Cell Biol, 2009,11(12):1473-1480.
doi: 10.1038/ncb1996 pmid: 19855386 |
[13] |
Yan MJ, Shu SQ, Guo CY , et al. Endoplasmic Reticulum stress in ischemic and nephrotoxic acute kidney injury[J]. Ann Med, 2018,50(5):381-390.
doi: 10.1080/07853890.2018.1489142 pmid: 29895209 |
[14] |
Yoshida H . ER stress and diseases[J]. FEBS J, 2007,274(3):630-658.
doi: 10.1111/j.1742-4658.2007.05639.x pmid: 17288551 |
[15] |
Inagi R . Endoplasmic reticulum stress as a progression factor for kidney injury[J]. Curr Opin Pharmacol, 2010,10(2):156-165.
doi: 10.1016/j.coph.2009.11.006 pmid: 20045381 |
[16] | Guzel E, Arlier S, Guzeloglu-Kayisli O , et al. Endoplasmic reticulum stress and homeostasis in reproductive physiology and pathology[J]. Int J Mol Sci, 2017,18(4):792. |
[17] |
Cybulsky AV . Endoplasmic Reticulum stress, the unfolded protein response and autophagy in kidney diseases[J]. Nat Rev Nephrol, 2017,13(11):681-696.
doi: 10.1038/nrneph.2017.129 pmid: 28970584 |
[18] |
Chen YN, Brandizzi F . IRE1: ER stress sensor and cell fate executor[J]. Trends Cell Biol, 2013,23(11):547-555.
doi: 10.1016/j.tcb.2013.06.005 pmid: 23880584 |
[19] |
Li YR, Jiang WY, Niu QN , et al. eIF2α-CHOP-BCl-2/JNK and IRE1α-XBP1/JNK signaling promote apo-ptosis and inflammation and support the proliferation of Newcastle disease virus[J]. Cell Death Dis, 2019,10(12):891.
doi: 10.1038/s41419-019-2128-6 pmid: 31767828 |
[20] |
Tam AB, Roberts LS, Chandra V , et al. The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms[J]. Dev Cell, 2018, 46(3): 327-343. e7.
doi: 10.1016/j.devcel.2018.04.023 pmid: 30086303 |
[21] | Li YM, Guo YS, Tang J , et al. New insights into the roles of CHOP-induced apoptosis in ER stress[J]. Acta Biochim Biophys Sin (Shanghai), 2015,47(2):146-147. |
[22] | 薛芃, 李蓓, 谈珺 , 等. 脂多糖诱导的内质网应激在牙周膜干细胞中的表达及其对成骨分化的影响[J]. 中华口腔医学杂志, 2015,50(9):548-553. |
Xue P, Li B, Tan J , et al. Effect of endoplasmic reti-culum stress on the expression and osteogenic diffe-rentiation of periodontal ligament stem cells[J]. Chin J Stomatol, 2015,50(9):548-553. | |
[23] | Lee SI, Kang KL, Shin SI , et al. Endoplasmic Reticulum stress modulates nicotine-induced extracellular matrix degradation in human periodontal ligament cells[J]. J Periodont Res, 2012,47(3):299-308. |
[24] | Bai YD, Wei Y, Wu L , et al. C/EBP β mediates endoplasmic Reticulum stress regulated inflammatory response and extracellular matrix degradation in LPS-stimulated human periodontal ligament cells[J]. Int J Mol Sci, 2016,17(3):385. |
[25] |
Yao SQ, Zhao W, Ou QM , et al. MicroRNA-214 suppresses osteogenic differentiation of human periodontal ligament stem cells by targeting ATF4[J]. Stem Cells Int, 2017,2017:3028647.
doi: 10.1155/2017/3028647 pmid: 29213288 |
[26] | Yamada H, Nakajima T, Domon H , et al. Endoplasmic Reticulum stress response and bone loss in experimental periodontitis in mice[J]. J Periodont Res, 2015,50(4):500-508. |
[27] |
Kim DS, Li B, Rhew KY , et al. The regulatory mechanism of 4-phenylbutyric acid against ER stress-induced autophagy in human gingival fibroblasts[J]. Arch Pharm Res, 2012,35(7):1269-1278.
doi: 10.1007/s12272-012-0718-2 pmid: 22864750 |
[28] |
Xue P, Li B, An Y , et al. Decreased MORF leads to prolonged endoplasmic Reticulum stress in periodontitis-associated chronic inflammation[J]. Cell Death Differ, 2016,23(11):1862-1872.
doi: 10.1038/cdd.2016.74 pmid: 27447113 |
[29] | Vasconcelos DF, Pereira da Silva FR, Pinto ME, et al. Decrease of pericytes is associated with liver disease caused by ligature-induced periodontitis in rats[J]. J Periodontol, 2017,88(2):e49-e57. |
[30] | Mealey BL, Oates TW . Diabetes mellitus and periodontal diseases[J]. J Periodontol, 2006,77(8):1289-1303. |
[31] | Suh JS, Kim S, Boström KI , et al. Periodontitis-induced systemic inflammation exacerbates atherosclerosis partly via endothelial-mesenchymal transition in mice[J]. Int J Oral Sci, 2019,11(3):21. |
[32] | Gulle K, Akpolat M, Kurcer Z , et al. Multi-organ injuries caused by lipopolysaccharide-induced perio-dontal inflammation in rats: role of melatonin[J]. J Periodont Res, 2014,49(6):736-741. |
[33] | Wang H, Chen L, Zhang X , et al. Kaempferol protects mice from d-GalN/LPS-induced acute liver fai-lure by regulating the ER stress-Grp78-CHOP signaling pathway[J]. Biomed Pharmacother, 2019,111:468-475. |
[34] |
Fujita M, Kuraji R, Ito H , et al. Histological effects and pharmacokinetics of lipopolysaccharide derived from Porphyromonas gingivalis on rat maxilla and liver concerning with progression into non-alcoholic steatohepatitis[J]. J Periodontol, 2018,89(9):1101-1111.
pmid: 29799627 |
[35] |
Tomofuji T, Ekuni D, Yamanaka R , et al. Chronic administration of lipopolysaccharide and proteases induces periodontal inflammation and hepatic steatosis in rats[J]. J Periodontol, 2007,78(10):1999-2006.
doi: 10.1902/jop.2007.070056 pmid: 17916001 |
[36] |
Shi T, Song WF, Xu RL . Autophagy and ER stress in LPS/GalN-induced acute liver injury[J]. Mol Med Rep, 2017,16(5):7001-7005.
pmid: 28901440 |
[37] |
Wen JJ, Lin HF, Zhao MS , et al. Piceatannol attenuates D-GalN/LPS-induced hepatoxicity in mice: involvement of ER stress, inflammation and oxidative stress[J]. Int Immunopharmacol, 2018,64:131-139.
doi: 10.1016/j.intimp.2018.08.037 pmid: 30173053 |
[38] | Rachdaoui N . Insulin: the friend and the foe in the development of type 2 diabetes mellitus[J]. Int J Mol Sci, 2020,21(5):E1770. |
[39] |
Laybutt DR, Preston AM, Akerfeldt MC , et al. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes[J]. Diabetologia, 2007,50(4):752-763.
pmid: 17268797 |
[40] | Hagiwara S, Iwasaka H, Shingu C , et al. Heat shock protein 72 protects insulin-secreting beta cells from lipopolysaccharide-induced endoplasmic Reticulum stress[J]. Int J Hyperthermia, 2009,25(8):626-633. |
[41] |
Hu YM, Liu J, Yuan Y , et al. Sodium butyrate mitigates type 2 diabetes by inhibiting PERK-CHOP pa-thway of endoplasmic Reticulum stress[J]. Environ Toxicol Pharmacol, 2018,64:112-121.
doi: 10.1016/j.etap.2018.09.002 pmid: 30342372 |
[42] | Domon H, Takahashi N, Honda T , et al. Up-regulation of the endoplasmic reticulum stress-response in periodontal disease[J]. Clin Chim Acta, 2009,401(1/2):134-140. |
[43] |
Allagnat F, Christulia F, Ortis F , et al. Sustained production of spliced X-box binding protein 1 (XBP1) induces pancreatic beta cell dysfunction and apoptosis[J]. Diabetologia, 2010,53(6):1120-1130.
pmid: 20349222 |
[44] | Ghosh R,Colon-Negron K, Papa FR. Endoplasmic Reticulum stress, degeneration of pancreatic islet β-cells, therapeutic modulation of the unfolded protein response in diabetes[J]. Mol Metab, 2019, 27-S:S60-S68. |
[45] | Liu MQ, Chen Z, Chen LX . Endoplasmic Reticulum stress: a novel mechanism and therapeutic target for cardiovascular diseases[J]. Acta Pharmacol Sin, 2016,37(4):425-443. |
[46] | Pedruzzi E, Guichard C, Ollivier V , et al. NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic Reticulum stress and apoptosis in human aortic smooth muscle cells[J]. Mol Cell Biol, 2004,24(24):10703-10717. |
[47] |
Chen J, Zhang MH, Zhu MM , et al. Paeoniflorin prevents endoplasmic reticulum stress-associated inflammation in lipopolysaccharide-stimulated human umbilical vein endothelial cells via the IRE1α/NF-κB signaling pathway[J]. Food Funct, 2018,9(4):2386-2397.
pmid: 29594285 |
[48] | Hirasawa M, Kurita-Ochiai T . Porphyromonas gingivalis induces apoptosis and autophagy via ER stress in human umbilical vein endothelial cells[J]. Mediators Inflamm, 2018,2018:1967506. |
[1] | 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44. |
[2] | 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668. |
[3] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[4] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[5] | 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334. |
[6] | 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24. |
[7] | 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31. |
[8] | 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528. |
[9] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[10] | 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599. |
[11] | 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440. |
[12] | 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316. |
[13] | 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355. |
[14] | 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248. |
[15] | 白慧敏,张雨薇,孟姝,刘程程. 特异性促炎症消退介质在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 85-93. |
|