Int J Stomatol ›› 2019, Vol. 46 ›› Issue (4): 387-392.doi: 10.7518/gjkq.2019070

• Original Articles • Previous Articles     Next Articles

3D finite element analysis for influence of microimplant thread depth on microimplant and mandible

Yan Dan1,Zhang Xizhong2,Wang Jianguo2()   

  1. 1. Dept. of Tongji West Clinic, Foshan Stomatological Hospital, School of Stomatology and Medicine, Foshan University, Foshan 528000, China
    2. Dept. of Orthodontics, Tianjin Stomatological Hospital, Tianjin 300041, China
  • Received:2018-08-18 Revised:2019-02-15 Online:2019-07-01 Published:2019-07-12
  • Supported by:
    This study was supported by Foshan Medical Science and Technology Board(2017AB001881);Medical Research of Foshan Health and Family Planning Bureau(20180158)

Abstract:

Objective In this work, we aimed to analyse the influence of microimplant thread depth on stress and displacement distribution on microimplant and mandible and apply the theoretical reference in choosing orthodontic anchorage microimplant and optimising its design.Methods The 3D finite element models of the microimplants with different thread depths and mandibles were established using Pro/E. The elements were divided using Hypermesh, and results were calculated using the ANSYS software. The force of 2.94 N which was parallel to the mandible surface was applied on the top of the microimplant.Results The maximum Von-mises stress on the microimplant-bone interface focused on the cortical bone. The model with thread depth of 0.3 mm had the smallest Von-mises stress peak of 18.12 MPa on the microimplant neck and its nearby bone, whereas the largest Von-mises stress peak of 60.28 MPa occurred in the model with the thread depth of 0.4 mm.Conclusion The microimplant thread depth influenced the stress distribution on the microimplant and mandible. The stress and displacement distributions on microimplant-bone interface and microimplant were at the optimum when the tread depth was 0.3 mm among all the cases mentioned in this work.

Key words: finite element analysis, stress, orthodontic anchorages, microimplant, thread depth

CLC Number: 

  • R783.5

TrendMD: 

Tab 1

The element number and node number of micro-implant-bone models"

模型序号 网格总数 节点总数
De-1 50 984 11 910
De-2 44 678 10 566
De-3 42 588 10 050
De-4 57 518 13 603

Tab 2

Mechanical properties of the expertment material"

材料名称 弹性模量/MPa 泊松比
骨密质 13 700 0.3
骨松质 1 370 0.3
微种植体 103 400 0.35

Fig 1

Boundary and load conditions"

Fig 2

Von-mises stress curve line on the micro-implant-bone interface"

Fig 3

The displancement curve line on the micro-implant-bone interface"

Tab 3

The peak Von-mises stress on micro-implant-bone interface Mpa"

模型序号 压力侧 非压力侧 平均值
De-1 22.61 35.81 29.21
De-2 39.43 63.10 51.27
De-3 41.36 43.01 42.19
De-4 52.80 98.97 75.89

Tab 4

The peak displacement on micro-implant-bone interface mm"

模型序号 压力侧 非压力侧
De-1 0.004 46 0.004 54
De-2 0.004 79 0.004 69
De-3 0.003 36 0.003 46
De-4 0.006 06 0.004 63

Fig 4

The Von-mises stress distribution on the longitudinal section of the modelsA:De-1;B:De-2;C:De-3;D:De-4。"

Fig 5

The curve line of Von-mises stress along z axis"

5 参考文献
[1] 邵雯婷, 王学金 . 正畸微种植体支抗稳定性研究方法现状[J]. 口腔医学研究, 2016,32(10):1106-1109.
Shao WT, Wang XJ . Status of research methods on the stability of micro-implants as orthodontic anchorage[J]. J Oral Sci Res, 2016,32(10):1106-1109.
[2] Favero L, Giagnorio C, Cocilovo F . Comparative analysis of anchorage systems for micro implant orthodontics[J]. Prog Orthod, 2010,11(2):105-117.
[3] 林东, 林珊, 陈江 , 等. 不同螺纹深度微小种植体的生物力学三维有限元研究[J]. 福建医科大学学报, 2009,43(5):381-383.
Lin D, Lin S, Chen J , et al. A three-dimensional finite element analysis on the influence of different depth of thread on biomechanical properties of micro-im-plant-bone interface[J]. J Fujian Med Univ, 2009,43(5):381-383.
[4] 颜丹, 王建国, 张锡忠 . 不同骨内段直径对支抗微种植体和颌骨表面影响的三维有限元分析[J]. 天津医药, 2013,41(1):22-25, 97.
Yan D, Wang JG, Zhang XZ . Three-dimensional finite element analysis for the influence of micro-implant endosteal diameter on micro-implant and surface of mandibular[J]. Tianjin Med J, 2013,41(1):22-25, 97.
[5] Tada S, Stegaroiu R, Kitamura E , et al. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis[J]. Int J Oral Maxillofac Implants, 2003,18(3):357-368.
[6] Duaibis R, Kusnoto B, Natarajan R , et al. Factors affecting stresses in cortical bone around miniscrew implants: a three-dimensional finite element study[J]. Angle Orthod, 2012,82(5):875-880.
[7] Sebbar M, Bourzgui F, Badre L , et al. Anchorage miniscrews: a histologic study of peri-implant soft tissue[J]. Int Orthod, 2012,10(1):85-95.
[8] Abuhussein H, Pagni G, Rebaudi A , et al. The effect of thread pattern upon implant osseointegration[J]. Clin Oral Implants Res, 2010,21(2):129-136.
[9] Chowdhary R, Halldin A, Jimbo R , et al. Evaluation of stress pattern generated through various thread designs of dental implants loaded in a condition of immediately after placement and on osseointegration: an FEA study[J]. Implant Dent, 2013,22(1):91-96.
doi: 10.1097/ID.0b013e31827daf55
[10] Mischkowski RA, Kneuertz P, Florvaag B , et al. Bio-mechanical comparison of four different miniscrew types for skeletal anchorage in the mandibulo-maxil-lary area[J]. Int J Oral Maxillofac Surg, 2008,37(10):948-954.
[11] 周栾慧, 杨四维, 黄跃 , 等. 植入角度及深度对种植体支抗稳定性影响的三维有限元研究[J]. 口腔医学, 2010,30(8):488-490.
Zhou LH, Yang SW, Huang Y , et al. 3D-FE study of implant anchorage stability under effects of inserting angulation and depth[J]. Stomatology, 2010,30(8):488-490.
[12] Lin TS, Tsai FD, Chen CY , et al. Factorial analysis of variables affecting bone stress adjacent to the orthodontic anchorage mini-implant with finite ele-ment analysis[J]. Am J Orthod Dentofacial Orthop, 2013,143(2):182-189.
[13] 曾婷艳, 黄生高 . 种植体支抗稳定性的三维有限元分析[J]. 国际口腔医学杂志, 2018,45(1):112-118.
Zeng TY, Huang SG . A three-dimensional finite ele-ment analysis for stability of mini-implant anchorage[J]. Int J Stomatol, 2018,45(1):112-118.
[1] Sun Xiaoqian, Zhang Jun. Advances in the effects of mechanical environment on the biological behaviors and mechanism of head and neck cancer [J]. Int J Stomatol, 2023, 50(4): 414-418.
[2] Huang Yihuan,Li Weihang,Ma Dian,Chen Jin,Qian Jie,Li Xudong.. Finite element analysis of IPS e.maxCAD and Lava Ultimate materials with different thickness in occlusal veneer [J]. Int J Stomatol, 2023, 50(4): 423-432.
[3] He Jing,Hu Mingjia,Xiao Ning,Li Jia,Sun Wanxin,Ling Lü,Liu Fan. Investigation on the degree of psychological distress and its influencing factors in patients with oral lichen planus [J]. Int J Stomatol, 2023, 50(3): 308-313.
[4] Wang Taiping,Shi Xinglian,Li Zhezhen,Liu Mei,Jiang Jianhong. Analysis of psychological factors and intervention in patients with oral cancer [J]. Int J Stomatol, 2023, 50(2): 203-209.
[5] Ding Xu,Li Xin,Li Yan,Xia Boyuan,Yu Weixian. Research progress on the relationship among oxidative stress, mitochondrial quality control, and periodontitis [J]. Int J Stomatol, 2021, 48(4): 385-390.
[6] Fang Lingli,Tan Xi,Ye Yusi,Huang Lan,He Yao. Experimental study on behavior changes of condylar chondrocytes in early stage of temporomandibular joint degeneration [J]. Int J Stomatol, 2021, 48(4): 417-425.
[7] Meng Xiuping,Hou Jianhua,Li Yiran,Sun Mengyao. Research progress on the selection and design of base materials in deep margin elevation [J]. Int J Stomatol, 2021, 48(3): 280-286.
[8] Zhou Feng,Chen Ye,Chen Chen,Zhang Yining,Geng Ruiman,Liu Ji. Mechanism of sirtuin 1 in regulating periodontitis [J]. Int J Stomatol, 2021, 48(3): 341-346.
[9] Li Xin,Li Yan,Ding Xu,Xia Boyuan,Yu Weixian. Role of endoplasmic reticulum stress in periodontitis affecting systemic diseases [J]. Int J Stomatol, 2021, 48(1): 12-17.
[10] Ji Mengzhen,Qi Meiyao,Du Kexin,Quan Shuqi,Zhang Yuqiang,Zheng Qinghua. Three-dimensional finite element study on the effect of pulp opening cavity on the resistance of cracked teeth after full crown restoration [J]. Int J Stomatol, 2021, 48(1): 41-49.
[11] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[12] Chen Xin,Mao Bochun,Lu Yuqing,Dong Bo,Zhu Zhuoli,Yue Li,Yu Haiyang. Research on mechanical property of Co-Cr alloy and polyetheretherketone frameworks of removable partial denture: a three-dimensional finite element analysis [J]. Int J Stomatol, 2019, 46(5): 526-531.
[13] Zhuo Yang,Shengdan Zhang,Chengcheng Liu,Yi Ding. Research progress on salivary markers for diagnosis of aggressive periodontitis [J]. Inter J Stomatol, 2019, 46(1): 55-61.
[14] Donglei Wu,Jing Liu. Research progress on the association between oxidative stress injury and certain oral diseases [J]. Inter J Stomatol, 2019, 46(1): 62-67.
[15] Lu Huang,Jie Qian. Research progress on three dimensional finite element analysis method in inlay restorations [J]. Inter J Stomatol, 2018, 45(6): 728-733.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .