国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (5): 603-610.doi: 10.7518/gjkq.2018.05.018

• 综述 • 上一篇    下一篇

骨组织工程支架材料修复牙槽嵴裂的研究进展

易芳,王斯任,褚衍昊,卢燕勤()   

  1. 中南大学湘雅口腔医院正畸科 长沙 410008
  • 收稿日期:2017-10-29 修回日期:2018-04-15 出版日期:2018-09-01 发布日期:2018-09-20
  • 通讯作者: 卢燕勤
  • 作者简介:易芳,硕士,Email:yifangcsu@163.com
  • 基金资助:
    中南大学研究生自主探索创新项目(2017zzts914)

Research progress on the repair of alveolar cleft with bone tissue engineering scaffolds

Fang Yi,Siren Wang,Yanhao Chu,Yanqin. Lu()   

  1. Dept. of Orthodontics, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China
  • Received:2017-10-29 Revised:2018-04-15 Online:2018-09-01 Published:2018-09-20
  • Contact: Yanqin. Lu
  • Supported by:
    This study was supported by Innovation Research Program of Graduate Students of Central South University(2017zzts914)

摘要:

牙槽嵴裂是一种常见的颌面部发育畸形,传统的骨移植治疗存在骨量有限、术后易出现并发症等缺陷。骨组织工程修复骨缺损消除了自体骨移植的缺点,为牙槽嵴裂修复提供了新途径,成为当前的研究热点。骨组织工程研究的中心环节是支架材料,本文就骨组织工程支架及其修复牙槽嵴裂的研究状况作一综述。

关键词: 牙槽嵴裂, 骨组织工程, 支架材料

Abstract:

Alveolar cleft is a common craniofacial abnormality. Traditional treatments, including autogenous bone grafting, suffer from limited bone resources and high incidence of post-operative complications. These problems can be solved by bone tissue engineering, which offers a superior approach to repair the alveolar cleft. This article reviews the progress of using various scaffolds for repairing alveolar cleft.

Key words: alveolar cleft, bone tissue engineering, scaffold

中图分类号: 

  • R782.13

表 1

骨组织工程支架材料的优缺点"

支架材料 优点 缺点
磷酸钙生物陶瓷支架 生物相容性、生物活性、骨传导性好,无免 脆性大,可塑性差,降解性弱,制备时间长,孔隙率难控制,
疫原性,成本低[19,20] 产量低
聚合物支架 生物降解性好,生物相容性好,加工灵活, 脆性大,力学强度差,体内强度衰减快,降解不易控制,降解
可塑性好 产物可能导致炎症
异种骨材料 骨传导性好,一定的骨诱导能力,来源广泛 有一定抗原性
复合材料支架 结合了相应组分的优点 材料间最适比例难控制,制备技术复杂
负载细胞或生长因子支架材料 成血管化和骨诱导性好 制备成本高,因子的剂量及控制其稳定、持续地释放较难

表 2

单一支架材料修复牙槽嵴裂的研究应用"

支架材料 实验组 对照组 应用 评价方法 研究结果 随访时间/月 参考文献
磷酸钙生 HA 自体髂骨 23例单侧牙槽嵴 锥形束计算机断层扫 移植成功。HA为100%, 67.82±10.36; Benlidayi等[21]
物陶瓷 骨松质 描(cone beam com- 自体骨移植为83.4%;裂 47.33±13.79
puted tomography, 隙区骨密度差异无统计学
CBCT) 意义
β-TCP 7例单侧牙槽嵴裂 CBCT 裂隙区骨体积平均百分比 6 De Ruiter等[22]
为73%±6%
β-TCP 对侧自体 10只荷兰奶山羊 micro-CT 缺损处重建的骨质和骨体 6 Janssen等[23]
骨移植 双侧牙槽嵴裂 积与自体骨移植侧一致
BG 1例单侧牙槽嵴裂 放射学 修复效果为Bergland Ⅰ级 12 Ezzat等[24]
聚合物 牛胶原基 1例单侧牙槽嵴裂 X线 裂隙区出现成骨,尖牙正 18 Pradel等[30]
常萌出
异种骨类 复合牛骨 15例单侧牙槽突 X线、CT X线显示有明显新骨形成, 4 徐燕等[32]
患者面部外形改善
脱蛋白牛 自体髂骨 30例牙槽嵴裂 X线、临床观察 2组骨组织变化没有明显 24 Thuaksuban等[33]
骨复合自 骨松质 差异,尖牙萌出;术后并
体骨 发症明显减少。
脱蛋白无 9例单侧牙槽嵴裂 临床观察、放射学 平均骨扩增量5.45 mm, 2 Aly等[3]
机牛骨、 修复效果评价Bergland标
自体下颌 准分级为Ⅰ级占55%、Ⅱ
体骨 级34%、Ⅲ级1%

表 3

复合支架材料修复牙槽嵴裂的研究应用"

支架材料 对照组 应用 评价方法 研究结果 随访时间/月 参考文献
β-TCP/Col PLLA/PCL支架 54只SD大鼠 CT、组织学分析 新生成骨的体积比:自体骨移植组 4 Ekin等[9]
组、自体骨移植 牙槽嵴裂 45.4%、β-TCP/Col组21.5%、PLLA/
组、空白对照组 PCL组18.2%
HA/Col/自体 自体髂骨骨松质 15例单侧牙 CT 裂隙区骨体积(mL)、术中输血量 12 Takemaru等[6]
髂骨骨松质 槽嵴裂 (mL):自体骨移植组0.518±0.303、
51.5±37.9,支架组0.648±0.120、
12.4±5.13;术后12个月骨体积没有明
显差异
磷酸八钙/Col Col 6只比格犬牙 Micro-CT、X线、 缺损区被新骨充填,新骨由骨密质和 10 Matsui等[29]
槽嵴裂 苏木精-伊红染色 骨松质构成,较Col移植组新生骨体积
更大

表 4

负载细胞、生长因子支架材料修复牙槽嵴裂的研究应用"

支架材料 负载细胞、生
长因子种类
应用 对照组 评价方法 实验结果 随访时
间/月
碳酸羟 BMSC 3只比格犬双侧牙 HA X线、 组织 植骨区实验和对照组的牙齿移动距离没有差异;牙齿移动 6
磷灰石[35] 槽嵴裂,移植术 学染色 速率实验组一致,对照组不一致;对照组观察到牙根吸收
后6个月对上颌牙
加力
β-TCP[36] BMSC 6只犬双侧牙槽 β-TCP、自 荧光标记、X 侧切牙移动距离、剩余牙槽骨高度、尖牙与侧切牙间的 5
嵴裂,术后2个 体髂骨 线、组织学 新骨生成百分比:实验组(5.345±0.936) mm,73.60%±
月对上颌牙加力 分析、组织 6.51%,70.79%±7.02%;单纯支架组(6.986±1.412) mm,
形态学分析 56.31%± 7.72%,54.98%±9.22%;自体骨移植组(4.665±
0.483) mm,72.42%±8.72%,78.68% ±4.91%
β-TCP[37] MSC 10只比格犬单侧 空白对照 X线、CT、 实验组骨内矿物质含量是对照组的3倍,对照组缺损被纤 3.25
牙槽嵴裂 组织学分析 维组织充填,而实验组缺损被新生骨取代
β-TCP[38] BMSC 14只比格犬单侧 空白组、 荧光标记、 实验组新骨形成和矿化的速度较单纯自体骨移植组明显加 2
牙槽嵴裂结合上 自体髂骨 X线螺旋CT、 快,骨吸收明显减少,与自体髂骨移植结合快速扩弓组无
颌快速扩弓 组织、自 苏木精-伊红 明显差别
体髂骨移 染色、组织
植结合上 形态学分析
颌快速扩
弓组
支架材料 负载细胞、生
长因子种类
应用 对照组 评价方法 实验结果 随访时
间/月
HA-TCP[40] 未分化MSC、分化MSC 84只Lewis大鼠单侧牙槽嵴裂 HA-TCP、空白对照 CBCT、组织形态学分析、组织形态测定 骨缺损的体积和宽度:负载未分化MSC组(4.08±
1.36) mm3、(2.39 ± 0.23) mm,负载分化MSC组 (5.00±0.84)mm3、(2.53±0.22) mm,单纯支架组(5.50±1.05) mm3、(2.70±0.66) mm,空白对照组(6.86±3.21) mm3、(2.63±0.52)mm
1.5
HA-TCP[41] MSC 4只犬双侧牙槽嵴裂 对侧自体胫骨骨密质 组织形态学分析 骨形成率对照组为70%,实验组为5% 2
Col[42] 牙髓干细胞 60只Wistar大鼠牙槽嵴裂 自体髂骨、Col 苏木精-伊红染色 自体骨移植组新生骨量最多
2
胶原膜复合含HA的富血小板血浆凝胶[43] MSC 1例单侧牙槽嵴裂 CT 裂隙处有骨形成,瘘管消失 3
富含血小板的纤维蛋白、自体髂骨[44] BMSC 20只比格犬单侧牙槽嵴裂 自体髂骨、自体髂骨复合BMSC、自体髂骨和富含血小板的纤
维蛋白
CT、苏木精-伊红染色 实验组骨密度最高,新骨结构形成最好;单纯自体骨移植骨吸收率最高,骨密度最低 6
脱钙骨、硫酸钙人工骨[45] MSC 2例单侧牙槽嵴裂 CT 骨再生:1例患者34.5%,1例患者25.6% 4
牛胶原脱钙骨基质[46] 成骨细胞 8例牙槽嵴裂 自体髂骨骨松质 CBCT 裂隙区平均体积和骨化率:实验组(0.55±0.24) cm3
40.9%,对照组(0.59±0.23) cm3、36.6%
6
HA-CP、Col[47] rhBMP-2 大鼠牙槽嵴裂 单纯支架和空白对照 组织学分析、 影像学 实验组新骨形成率最高 3
牛骨骨松质[48] BMP 63例单侧牙槽突裂 自体髂骨骨松质骨 螺旋CT 治疗总有效率、牙槽骨密度(g·cm-2):实验组90%、
0.78±0.19,对照组94%、0.79±0.10,较治疗前显著上升,2组均有尖牙萌出
12
Col[7] rhBMP-2 16例单侧牙槽嵴裂 自体髂骨骨松质 CT 术后肿胀、疼痛患者:实验组37.5%,对照组87.5%;
术后平均住院时间(d)、裂隙区骨充填比、平均骨高
度(mm)、骨高度百分比:实验组1、74.4%、10.2、
65.0%,对照组3、80.2%、13.9、86.8%
12
Col[8] rhBMP-2 18例单侧牙槽嵴裂 自体髂骨
骨松质组、骨膜成形术组
CT 平均骨形成率:实验组75%,自体骨移植组78%,骨膜成形术组25.3%,新生骨骨密度实验组与自体骨移植组相似 12
[1] Jabbari F, Hakelius MM, Thor AL , et al. Skoog pri-mary periosteoplasty versus secondary alveolar bone grafting in unilateral cleft lip and alveolus: long-term effects on alveolar bone formation and maxillary growth[J]. Plast Reconstr Surg, 2017,139(1):137-148.
doi: 10.1097/PRS.0000000000002910
[2] Chang CS, Wallace CG, Hsiao YC , et al. Difference in the surgical outcome of unilateral cleft lip and palate patients with and without pre-alveolar bone graft orthodontic treatment[J]. Sci Rep, 2016,6:23597.
doi: 10.1038/srep23597
[3] Aly LA, Hammouda N , Secondary closure of alveolar cleft with resorbable collagen membrane and a com-bination of intraoral autogenous bone graft and de-proteinized anorganic bovine bone[J]. Ann Maxillo-fac Surg, 2016,6(2):165.
doi: 10.4103/2231-0746.200351
[4] Friesenbichler J, Maurer-Ertl W, Bergovec M , et al. Clinical experience with the artificial bone graft sub-stitute Calcibon used following curettage of benign and low-grade malignant bone tumors[J]. Sci Rep, 2017,7(1):1736.
doi: 10.1038/s41598-017-02048-w
[5] Kaláb M, Karkoška J, Kamínek M , et al. Successful three-year outcome in a patient with allogenous ster-nal bone graft in the treatment of massive post-ster-notomy defects[J]. Int J Surg Case Rep, 2015,7C:6-9.
[6] Takemaru M, Sakamoto Y, Sakamoto T , et al. Asse-ssment of bioabsorbable hydroxyapatite for secon-dary bone grafting in unilateral alveolar cleft[J]. J Plast Reconstr Aesthet Surg, 2016,69(4):493-496.
doi: 10.1016/j.bjps.2015.10.040
[7] Alonso N, Tanikawa DY, Freitas Rda S , et al. Eva-luation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients[J]. Tissue Eng Part C Methods, 2010,16(5):1183-1189.
doi: 10.1089/ten.tec.2009.0824
[8] Canan LW Jr, da Silva Freitas R, Alonso N , et al. Human bone morphogenetic protein-2 use for maxi-llary reconstruction in cleft lip and palate patients[J]. J Craniofac Surg, 2012,23(6):1627-1633.
doi: 10.1097/SCS.0b013e31825c75ba
[9] Ekin O, Calis M, Aliyev A , et al. Poly(L-lactide)/poly (ε-caprolactone) and collagen/β-tricalcium phosphate scaffolds for the treatment of critical-sized rat alveo-lar defects: a microtomographic, molecular-biolo-gical, and histological study[J]. Cleft Palate Cranio-fac J, 2016,53(4):453-463.
doi: 10.1597/14-309
[10] Moreno M, Amaral MH, Lobo JM , et al. Scaffolds for bone regeneration: state of the art[J]. Curr Pharm Des, 2016,22(18):2726-2736.
doi: 10.2174/1381612822666160203114902 pmid: 26845128
[11] Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE , Scaffold design for bone regeneration[J]. J Nano-sci Nanotechnol, 2014,14(1):15-56.
doi: 10.1166/jnn.2014.9127 pmid: 24730250
[12] Bose S, Roy M, Bandyopadhyay A , Recent advances in bone tissue engineering scaffolds[J]. Trends Bio-technol, 2012,30(10):546-554.
doi: 10.1016/j.tibtech.2012.07.005 pmid: 22939815
[13] Lichte P, Pape HC, Pufe T , et al. Scaffolds for bone healing: concepts, materials and evidence[J]. Injury, 2011,42(6):569-573.
doi: 10.1016/j.injury.2011.03.033 pmid: 21489531
[14] Wong HM, Wu S, Chu PK , et al. Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation[J]. Biomaterials, 2013,34(29):7016-7032.
doi: 10.1016/j.biomaterials.2013.05.062 pmid: 23787111
[15] Guvendiren M, Molde J, Soares RM , et al. Designing biomaterials for 3D printing[J]. ACS Biomater Sci Eng, 2016,2(10):1679-1693.
doi: 10.1021/acsbiomaterials.6b00121 pmid: 5181796
[16] Pang L, Hao W, Jiang M , et al. Bony defect repair in rabbit using hybrid rapid prototyping polylactic-co-glycolic acid/β-tricalciumphosphate collagen Ⅰ/apa-tite scaffold and bone marrow mesenchymal stem cells[J]. Indian J Orthop, 2013,47(4):388-394.
doi: 10.4103/0019-5413.114927
[17] Shafiee A, Atala A , Printing technologies for medi-cal applications[J]. Trends Mol Med, 2016,22(3):254-265.
doi: 10.1016/j.molmed.2016.01.003 pmid: 26856235
[18] Yu X, Tang X, Gohil SV , et al. Biomaterials for bone regenerative engineering[J]. Adv Healthc Mater, 2015,4(9):1268-1285.
doi: 10.1002/adhm.201400760 pmid: 25846250
[19] Tarafder S, Balla VK, Davies NM , et al. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering[J]. J Tissue Eng Regen Med, 2013,7(8):631-641.
doi: 10.1002/term.555 pmid: 4182013
[20] Wang L, Zhang B, Bao C , et al. Ectopic osteoid and bone formation by three calcium-phosphate ceramics in rats, rabbits and dogs[J]. PLoS One, 2014,9(9):e107044.
doi: 10.1371/journal.pone.0107044 pmid: 25229501
[21] Benlidayi ME, Tatli U, Kurkcu M , et al. Comparison of bovine-derived hydroxyapatite and autogenous bone for secondary alveolar bone grafting in patients with alveolar clefts[J]. J Oral Maxillofac Surg, 2012,70(1):e95-e102.
[22] De Ruiter A, Janssen N, Van Es R , et al. Micro-structured beta-tricalcium phosphate for repair of the alveolar cleft in cleft lip and palate patients: a pilot study[J]. Cleft Palate Craniofac J, 2015,52(3):336-340.
doi: 10.1597/13-260
[23] Janssen NG, de Ruiter AP, van Hout WMMT , et al. Microstructured β-tricalcium phosphate putty versus autologous bone for repair of alveolar clefts in a goat model[J]. Cleft Palate Craniofac J, 2017,54(6):699-706.
doi: 10.1597/15-314
[24] Ezzat AE, El-Shenawy HM , Repair of cleft alveolar bone with bioactive glass material using Z-plasty flap[J]. Int J Appl Basic Med Res, 2015,5(3):211-213.
doi: 10.4103/2229-516X.165381 pmid: 4606585
[25] Bandyopadhyay A, Petersen J, Fielding G , et al. ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: influence on strength degradation, me-chanical properties, and in vitro bone-cell material interactions[J]. J Biomed Mater Res B Appl Bio-mater, 2012,100(8):2203-2212.
[26] Fielding GA, Bandyopadhyay A, Bose S , Effects of silica and zinc oxide doping on mechanical and bio-logical properties of 3D printed tricalcium phosphate tissue engineering scaffolds[J]. Dent Mater, 2012,28(2):113-122.
doi: 10.1016/j.dental.2011.09.010
[27] 郭誉, 刘咏, 谭彦妮 , 等. 放电等离子烧结钛基磷酸三钙陶瓷复合材料的力学性能与生物活性[J]. 粉末冶金材料科学与工程, 2017,22(4):576-584.
Guo Y, Liu Y, Tan YN , et al. Mechanical properties and bioactivity of spark plasma sintered titanium/tricalcium phosphate biocomposites[J]. Mater Sci Eng Powder Metall, 2017,22(4):576-584.
[28] Berger M, Probst F, Schwartz C , et al. A concept for scaffold-based tissue engineering in alveolar cleft osteoplasty[J]. J Craniomaxillofac Surg, 2015,43(6):830-836.
doi: 10.1016/j.jcms.2015.04.023 pmid: 26027868
[29] Matsui A, Matsui K, Handa T , et al. The regenerated bone quality by implantation of octacalcium phos-phate collagen composites in a canine alveolar cleft model[J]. Cleft Palate Craniofac J, 2014,51(4):420-430.
doi: 10.1597/12-096
[30] Pradel W, Tausche E, Gollogly J , et al. Spontaneous tooth eruption after alveolar cleft osteoplasty using tissue-engineered bone: a case report[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008,105(4):440-444.
doi: 10.1016/j.tripleo.2007.07.042
[31] Ceccarelli G, Presta R, Benedetti L , et al. Emerging perspectives in scaffold for tissue engineering in oral surgery[J]. Stem Cells Int, 2017,2017:4585401.
doi: 10.1155/2017/4585401 pmid: 28337223
[32] 徐燕, 翟晓梅, 陆玉平 , 等. 复合牛骨在修复牙槽突裂中的应用[J]. 中国美容医学, 2015,24(8):27-29.
Xu Y, Zhai XM, Lu YP , et al. Reconstruction of unilateral alveolar cleft with bovine bone complex graft[J]. Chin J Aesthet Med, 2015,24(8):27-29.
[33] Thuaksuban N, Nuntanaranont T, Pripatnanont P , A comparison of autogenous bone graft combined with deproteinized bovine bone and autogenous bone graft alone for treatment of alveolar cleft[J]. Int J Oral Maxillofac Surg, 2010,39(12):1175-1180.
doi: 10.1016/j.ijom.2010.07.008
[34] Tanataweethum N, Liu WC, Goebel WS , et al. Fa-brication of poly-L-lactic acid/dicalcium phosphate dihydrate composite scaffolds with high mechanical strength-implications for bone tissue engineering[J]. J Funct Biomater, 2015,6(4):1036-1053.
doi: 10.3390/jfb6041036
[35] Tanimoto K, Sumi K, Yoshioka M , et al. Experi-mental tooth movement into new bone area regenera-ted by use of bone marrow-derived mesenchymal stem cells[J]. Cleft Palate Craniofac J, 2015,52(4):386-394.
doi: 10.1597/12-232
[36] Zhang D, Chu F, Yang Y , et al. Orthodontic tooth movement in alveolar cleft repaired with a tissue engineering bone: an experimental study in dogs[J]. Tissue Eng Part A, 2011,17(9/10):1313-1325.
doi: 10.1089/ten.tea.2010.0490
[37] Tokugawa Y, Kubota M, Nishimura M , et al. Bone regeneration of canine artificial alveolar clefts using bone-marrow-derived mesenchymal stromal cells and β-tricalcium phosphate: a preliminary study[J]. Orthodontic Waves, 2012,71(2):51-58.
doi: 10.1016/j.odw.2012.01.003
[38] Huang J, Tian B, Chu F , et al. Rapid maxillary ex-pansion in alveolar cleft repaired with a tissue-en-gineered bone in a canine model[J]. J Mech Behav Biomed Mater, 2015,48:86-99.
doi: 10.1016/j.jmbbm.2015.03.029
[39] Behnia H, Khojasteh A, Soleimani M , et al. Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: a preliminary report[J]. J Craniomaxillofac Surg, 2012,40(1):2-7.
doi: 10.1016/j.jcms.2011.02.003
[40] Korn P, Schulz MC, Range U , et al. Efficacy of tissue engineered bone grafts containing mesen-chymal stromal cells for cleft alveolar osteoplasty in a rat model[J]. J Craniomaxillofac Surg, 2014,42(7):1277-1285.
doi: 10.1016/j.jcms.2014.03.010
[41] Pourebrahim N, Hashemibeni B, Shahnaseri S , et al. A comparison of tissue-engineered bone from adi-pose-derived stem cell with autogenous bone repair in maxillary alveolar cleft model in dogs[J]. Int J Oral Maxillofac Surg, 2013,42(5):562-568.
doi: 10.1016/j.ijom.2012.10.012
[42] Jahanbin A, Rashed R, Alamdari DH , et al. Success of maxillary alveolar defect repair in rats using osteoblast-differentiated human deciduous dental pulp stem cells[J]. J Oral Maxillofac Surg, 2016, 74(4): 829. e1- 829. e9.
[43] Stanko P, Mracna J, Stebel A , et al. Mesenchymal stem cells—a promising perspective in the orofacial cleft surgery[J]. Bratisl Lek Listy, 2013,114(2):50-52.
doi: 10.4149/BLL_2013_012 pmid: 23331197
[44] Yuanzheng C, Yan G, Ting L , et al. Enhancement of the repair of dog alveolar cleft by an autologous iliac bone, bone marrow-derived mesenchymal stem cell, and platelet-rich fibrin mixture[J]. Plast Reconstr Surg, 2015,135(5):1405-1412.
doi: 10.1097/PRS.0000000000001166
[45] Behnia H, Khojasteh A, Soleimani M , et al. Secondary repair of alveolar clefts using human mesenchymal stem cells[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009,108(2):e1-e6.
doi: 10.1016/j.tripleo.2009.03.040 pmid: 19615638
[46] Pradel W, Lauer G , Tissue-engineered bone grafts for osteoplasty in patients with cleft alveolus[J]. Ann Anat, 2012,194(6):545-548.
doi: 10.1016/j.aanat.2012.06.002 pmid: 22776088
[47] Nguyen PD, Lin CD, Allori AC , et al. Scaffold-based rhBMP-2 therapy in a rat alveolar defect model: implications for human gingivoperiosteoplasty[J]. Plast Reconstr Surg, 2009,124(6):1829-1839.
doi: 10.1097/PRS.0b013e3181bf8024
[48] 夏金圣 . 骨诱导活性材料修复牙槽突裂骨缺损的可行与可靠性[J]. 中国组织工程研究, 2015,19(47):7619-7623.
Xia JS . Feasibility and reliability of osteoinduction active materials in repair of alveolar cleft defects[J]. J Clin Rehabil Tissue Eng Res, 2015,19(47):7619-7623.
[1] 陈润智,张文涛,陈枫,杨帆. 丝素蛋白水凝胶的改性方法及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2023, 50(6): 739-746.
[2] 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26.
[3] 李佩仪,张新春. 微环境酸碱度在组织工程骨再生中作用的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 64-70.
[4] 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224.
[5] 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94.
[6] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[7] 李龙飚,汪成林,叶玲. 天然支架材料在牙髓组织工程再生中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 666-672.
[8] 周洁, 王颖, 张雷, 吴婷婷, 周咏, 邹多宏. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018, 45(3): 280-285.
[9] 梁馨予, 石佳博, 陈文川, 朱智敏. 硅酸镁锂在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 340-345.
[10] 张艺馨, 李磊. 磷酸钙支架-药物缓释体系在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 346-350.
[11] 张佳, 柳忠豪. 锶在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 50-54.
[12] 郑健茂 毛学理 凌均棨. 镁基支架及其在动物骨缺损修复中的应用[J]. 国际口腔医学杂志, 2015, 42(6): 720-723.
[13] 李蕾, 乔祥晨 崔彩云, 郭维华, 田卫东, . 光引发聚合改性明胶用于牙组织工程的可能性初探[J]. 国际口腔医学杂志, 2015, 42(3): 265-268.
[14] 郭天奇,周延民,赵静辉,储顺礼,孙千月,罗雯静,马珊珊. 富血小板血纤蛋白与其他生物材料联合用于牙周组织修复[J]. 国际口腔医学杂志, 2015, 42(2): 231-236.
[15] 司家文1 郭礼和2 沈国芳1. 羊膜上皮细胞的生物学特性和骨向分化[J]. 国际口腔医学杂志, 2014, 41(5): 575-578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .