国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (2): 244-248.doi: 10.7518/gjkq.2022019

• 综述 • 上一篇    

内皮发育调节基因-1与牙周炎相关性的研究进展

蒋端(),申道南,赵蕾,吴亚菲()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院牙周病科 成都 610041
  • 收稿日期:2021-06-12 修回日期:2021-11-25 出版日期:2022-03-01 发布日期:2022-03-15
  • 通讯作者: 吴亚菲
  • 作者简介:蒋端,住院医师,硕士,Email: jiangduan1996@163.com

Research progress on the relationship between new anti-inflammatory factor developmental endothelial locus-1 and periodontitis

Jiang Duan(),Shen Daonan,Zhao Lei,Wu Yafei()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-06-12 Revised:2021-11-25 Online:2022-03-01 Published:2022-03-15
  • Contact: Yafei Wu

摘要:

牙周炎是慢性感染性疾病之一,菌斑微生物及其产物作为牙周炎始动因子不仅可以直接破坏牙周组织,而且可通过影响宿主免疫反应间接影响牙周炎的进程。内皮发育调节基因-1(DEL-1)是1种分泌型多结构域蛋白,作为新型抗炎因子可调节宿主炎症反应的不同阶段。研究表明,DEL-1不仅在牙周炎炎症起始阶段参与调节中性粒细胞的趋化募集,而且可调节免疫反应诱导炎症消退和抑制牙槽骨吸收、促进新骨形成。本文就新型抗炎因子DEL-1参与调控牙周炎相关性研究作一综述。

关键词: 内皮发育调节基因-1, 牙周炎, 中性粒细胞, 炎症消退, 牙槽骨吸收

Abstract:

Periodontitis is a chronic infectious disease. As initial factors of periodontitis, plaque microorganisms and their products can destroy periodontal tissue directly and indirectly affect the process of periodontitis by affecting host immune response. Developmental endothelial locus-1(DEL-1) is a secretory multi-domain protein that regulates different stages of host inflammatory response according to its expression location. DEL-1 is involved in the regulation of neutrophil recruitment at the initial stage of periodontitis and can induce inflammation resolution, which can inhibit alveolar bone resorption and promote new bone formation. This article reviews the research on the role of new anti-inflammatory factor DEL-1 in the regulation of periodontitis.

Key words: developmental endothelial locus-1, periodontitis, neutrophil, inflammation resolution, alveolar bone resorption

中图分类号: 

  • R781.4
[1] Hajishengallis G, Chavakis T. DEL-1-regulated immune plasticity and inflammatory disorders[J]. Trends Mol Med, 2019, 25(5): 444-459.
doi: S1471-4914(19)30045-0 pmid: 30885428
[2] Suárez LJ, Garzón H, Arboleda S, et al. Oral dysbiosis and autoimmunity: from local periodontal responses to an imbalanced systemic immunity. A review[J]. Front Immunol, 2020, 11: 591255.
doi: 10.3389/fimmu.2020.591255 pmid: 33363538
[3] Choi EY, Chavakis E, Czabanka MA, et al. Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment[J]. Science, 2008, 322(5904): 1101-1104.
doi: 10.1126/science.1165218
[4] Shin J, Hosur KB, Pyaram K, et al. Expression and function of the homeostatic molecule Del-1 in endothelial cells and the periodontal tissue[J]. Clin Dev Immunol, 2013, 2013: 617809.
[5] Inönü E, Kayis SA, Eskan MA, et al. Salivary Del-1, IL-17, and LFA-1 levels in periodontal health and disease[J]. J Periodontal Res, 2020, 55(4): 511-518.
doi: 10.1111/jre.12738 pmid: 32153040
[6] Folwaczny M, Karnesi E, Berger T, et al. Clinical association between chronic periodontitis and the leukocyte extravasation inhibitors developmental endothelial locus-1 and pentraxin-3[J]. Eur J Oral Sci, 2017, 125(4): 258-264.
doi: 10.1111/eos.12357 pmid: 28643381
[7] Khader SA. Restraining IL-17: Del-1 deals the blow[J]. Nat Immunol, 2012, 13(5): 433-435.
doi: 10.1038/ni.2290
[8] Eskan MA, Jotwani R, Abe T, et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss[J]. Nat Immunol, 2012, 13(5): 465-473.
doi: 10.1038/ni.2260
[9] Klotzsche-von Ameln A, Cremer S, Hoffmann J, et al. Endogenous developmental endothelial locus-1 limits ischaemia-related angiogenesis by blocking inflammation[J]. Thromb Haemost, 2017, 117(6): 1150-1163.
doi: 10.1160/TH16-05-0354
[10] Kourtzelis I, Li XF, Mitroulis I, et al. DEL-1 promotes macrophage efferocytosis and clearance of inflammation[J]. Nat Immunol, 2019, 20(1): 40-49.
doi: 10.1038/s41590-018-0249-1 pmid: 30455459
[11] Rosas M, Davies LC, Giles PJ, et al. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal[J]. Science, 2014, 344(6184): 645-648.
doi: 10.1126/science.1251414
[12] Hajishengallis G, Korostoff JM. Revisiting the Page & Schroeder model: the good, the bad and the unknowns in the periodontal host response 40 years later[J]. Periodontol 2000, 2017, 75(1): 116-151.
doi: 10.1111/prd.12181 pmid: 28758305
[13] Dasgupta SK, Le A, Chavakis T, et al. Developmental endothelial locus-1 (Del-1) mediates clearance of platelet microparticles by the endothelium[J]. Circulation, 2012, 125(13): 1664-1672.
doi: 10.1161/CIRCULATIONAHA.111.068833 pmid: 22388320
[14] Bednarczyk M, Stege H, Grabbe S, et al. β2 inte-grins-multi-functional leukocyte receptors in health and disease[J]. Int J Mol Sci, 2020, 21(4): 1402.
doi: 10.3390/ijms21041402
[15] Cortés-Vieyra R, Rosales C, Uribe-Querol E. Neutrophil functions in periodontal homeostasis[J]. J Immunol Res, 2016, 2016: 1396106.
doi: 10.1155/2016/1396106 pmid: 27019855
[16] Hajishengallis G. New developments in neutrophil biology and periodontitis[J]. Periodontol 2000, 2020, 82(1): 78-92.
doi: 10.1111/prd.12313 pmid: 31850633
[17] Saxena S, Venugopal R, Chandrayan Rao R, et al. Association of chronic periodontitis and type 2 diabetes mellitus with salivary Del-1 and IL-17 levels[J]. J Oral Biol Craniofac Res, 2020, 10(4): 529-534.
doi: 10.1016/j.jobcr.2020.08.013 pmid: 32874883
[18] Mahilkar S, Malagi SK, Soni A, et al. IL-17, A possible salivary biomarker for preterm birth in females with periodontitis[J]. J Obstet Gynaecol India, 2021, 71(3): 262-267.
doi: 10.1007/s13224-021-01466-1
[19] Maekawa T, Hosur K, Abe T, et al. Antagonistic effects of IL-17 and D-resolvins on endothelial Del-1 expression through a GSK-3β-C/EBPβ pathway[J]. Nat Commun, 2015, 6: 8272.
doi: 10.1038/ncomms9272 pmid: 26374165
[20] Ziogas A, Maekawa T, Wiessner JR, et al. DHEA inhibits leukocyte recruitment through regulation of the integrin antagonist DEL-1[J]. J Immunol, 2020, 204(5): 1214-1224.
doi: 10.4049/jimmunol.1900746
[21] Stańdo M, Piatek P, Namiecinska M, et al. Omega-3 polyunsaturated fatty acids EPA and DHA as an adjunct to non-surgical treatment of periodontitis: a randomized clinical trial[J]. Nutrients, 2020, 12(9): E2614.
[22] Maekawa T, Tamura H, Domon H, et al. Erythromycin inhibits neutrophilic inflammation and mucosal disease by upregulating DEL-1[J]. JCI Insight, 2020, 5(15): 136706.
[23] Fujimura T, Mitani A, Fukuda M, et al. Irradiation with a low-level diode Laser induces the developmental endothelial locus-1 gene and reduces proinflammatory cytokines in epithelial cells[J]. Lasers Med Sci, 2014, 29(3): 987-994.
doi: 10.1007/s10103-013-1439-6
[24] Tamura H, Maekawa T, Domon H, et al. Effects of erythromycin on osteoclasts and bone resorption via DEL-1 induction in mice[J]. Antibiotics (Basel), 2021, 10(3): 312.
[25] Kajikawa T, Meshikhes F, Maekawa T, et al. Milk fat globule epidermal growth factor 8 inhibits perio-dontitis in non-human primates and its gingival crevicular fluid levels can differentiate periodontal health from disease in humans[J]. J Clin Periodontol, 2017, 44(5): 472-483.
doi: 10.1111/jcpe.2017.44.issue-5
[26] Siddiqui YD, Omori K, Ito T, et al. Resolvin D2 induces resolution of periapical inflammation and promotes healing of periapical lesions in rat periapical periodontitis[J]. Front Immunol, 2019, 10: 307.
doi: 10.3389/fimmu.2019.00307 pmid: 30863409
[27] Li X, Colamatteo A, Kalafati L, et al. The DEL-1/β3 integrin axis promotes regulatory T cell responses during inflammation resolution[J]. J Clin Invest, 2020, 130(12): 6261-6277.
doi: 10.1172/JCI137530
[28] Alvarez C, Suliman S, Almarhoumi R, et al. Regulatory T cell phenotype and anti-osteoclastogenic function in experimental periodontitis[J]. Sci Rep, 2020, 10(1): 19018.
doi: 10.1038/s41598-020-76038-w pmid: 33149125
[29] Shin J, Maekawa T, Abe T, et al. DEL-1 restrains osteoclastogenesis and inhibits inflammatory bone loss in nonhuman primates[J]. Sci Transl Med, 2015, 7(307): 307ra155.
[30] Kang JY, Kang N, Yang YM, et al. The role of Ca2+-NFATc1 signaling and its modulation on osteoclastogenesis[J]. Int J Mol Sci, 2020, 21(10): E3646.
[31] Mitroulis I, Kang YY, Gahmberg CG, et al. Deve-lopmental endothelial locus-1 attenuates complement-dependent phagocytosis through inhibition of Mac-1-integrin[J]. Thromb Haemost, 2014, 111(5): 1004-1006.
doi: 10.1160/TH13-09-0794
[32] Maekawa T, Kobayashi Y, Domon H, et al. Local regulator del1 inhibits bone-resorption via suppression of Wnt5a-Ror2 signaling axis[J]. J Bone Miner Res, 2018, 33: 257.
[33] Uehara S, Udagawa N, Kobayashi Y. Regulation of osteoclast function via Rho-Pkn3-c-Src pathways[J]. J Oral Biosci, 2019, 61(3): 135-140.
doi: 10.1016/j.job.2019.07.002
[34] Yuh DY, Maekawa T, Li X, et al. The secreted protein DEL-1 activates a beta3 integrin-FAK-ERK1/2-RUNX2 pathway and promotes osteogenic differentiation and bone regeneration[J]. J Biol Chem, 2020, 295(21): 7261-7273.
doi: 10.1074/jbc.RA120.013024
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[3] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[4] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[5] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[6] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[7] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[8] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[9] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[10] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[11] 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440.
[12] 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316.
[13] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
[14] 白慧敏,张雨薇,孟姝,刘程程. 特异性促炎症消退介质在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 85-93.
[15] 黄晓慧,祁本婷,杨洁,刘玉,孙卫斌. 机械性邻面菌斑控制措施对牙周非手术治疗效果影响的系统评价[J]. 国际口腔医学杂志, 2021, 48(6): 656-663.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .