国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (1): 76-83.doi: 10.7518/gjkq.2020004

• 综述 • 上一篇    下一篇

微小RNA介导的牙周炎与动脉粥样硬化相关机制的研究进展

周婕妤,刘琳,吴亚菲,赵蕾()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院牙周病科 成都 610041
  • 收稿日期:2019-05-08 修回日期:2019-09-12 出版日期:2020-01-01 发布日期:2020-01-01
  • 作者简介:周婕妤,博士,Email: 453499723@qq.com
  • 基金资助:
    国家自然科学基金(81771077);国家自然科学基金(81970944);四川省科学技术厅基金(2018SZ01161)

Research progress on microRNA-mediated mechanisms between periodontitis and atherosclerosis

Zhou Jieyu,Liu Lin,Wu Yafei,Zhao Lei()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-05-08 Revised:2019-09-12 Online:2020-01-01 Published:2020-01-01
  • Supported by:
    This study was supported by National Natural and Science Foundation of China(81771077);This study was supported by National Natural and Science Foundation of China(81970944);Fund of Science and Technology Department of Sichuan Province(2018SZ01161)

摘要:

牙周炎是一种主要由菌斑生物膜所引起的牙周支持组织慢性炎症破坏性疾病,与宿主的免疫反应相关。牙周致病菌可通过一过性菌血症进入血液循环系统,引发血管炎症反应,增加心血管疾病患病风险。微小RNA(microRNA)作为近年来小分子RNA的研究热点,可在表观遗传学水平调控基因表达,参与炎症调节。本文综述了牙周致病菌通过microRNA调控免疫炎症反应的机制,从而介导动脉粥样硬化的发生、发展,为牙周炎与动脉粥样硬化疾病关联的分子机制研究提供新的思路。此外,通过探索动脉粥样硬化与牙周炎相关特异性microRNA的表达模式,可为未来诊断或治疗心血管疾病提供新的参考。

关键词: 牙周致病菌, 牙周炎, 动脉粥样硬化, 心血管疾病, 微小RNA

Abstract:

Periodontitis is a chronic inflammatory disease characterised by destruction of periodontal supporting tissue, which is mainly due to plaque biofilm and host immune response. Periodontal pathogen can invade the blood circulation system by transient bacteraemia and trigger the vascular inflammation, which can definitely increase the risk of cardiovascular disease. MicroRNA, a small molecule RNA discussed in this paper, can regulate gene expression in epigenetics and participate in the regulation of inflammation. This review focuses on the mechanism of how periodontal pathogens regulate immune inflammatory response by microRNA to mediate the generation and development of atherosclerosis, which can provide new ideas for the research on the linkages on molecular mechanism between periodontitis and atherosclerosis. Moreover, exploring the specific microRNA expression patterns related to atherosclerosis and periodontitis can serve as a theoretical basis for the diagnosis and treatment of cardiovascular diseases in the future.

Key words: periodontal pathogen, periodontitis, atherosclerosis, cardiovascular disease, microRNA

中图分类号: 

  • R781.4 +2
[1] Gibson FC 3rd, Yumoto H, Takahashi Y , et al. Innate immune signaling and Porphyromonas gingivalis-accelerated atherosclerosis[J]. J Dent Res, 2006,85(2):106-121.
[2] Fabian MR, Sonenberg N, Filipowicz W . Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010,79:351-379.
[3] Nahid MA, Pauley KM, Satoh M , et al. miR-146a is critical for endotoxin-induced tolerance: implication in innate immunity[J]. J Biol Chem, 2009,284(50):34590-34599.
[4] Alam MM ,O’Neill LA . MicroRNAs and the resolution phase of inflammation in macrophages[J]. Eur J Im-munol, 2011,41(9):2482-2485.
[5] Caescu CI, Guo X, Tesfa L , et al. Colony stimulating factor-1 receptor signaling networks inhibit mouse macrophage inflammatory responses by induction of microRNA-21[J]. Blood, 2015,125(8):e1-e13.
[6] Cheng Y, Du L, Jiao H , et al. Mmu-miR-27a-5p-dependent upregulation of MCPIP1 inhibits the in-flammatory response in LPS-induced RAW264.7 macrophage cells[J]. Biomed Res Int, 2015,2015:607692.
[7] Lai L, Song Y, Liu Y , et al. MicroRNA-92a nega-tively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase[J]. J Biol Chem, 2013,288(11):7956-7967.
[8] Sun Y, Qin Z, Li Q , et al. MicroRNA-124 negatively regulates LPS-induced TNF-α production in mouse macrophages by decreasing protein stability[J]. Acta Pharmacol Sin, 2016,37(7):889-897.
[9] Fan G, Jiang X, Wu X , et al. Anti-inflammatory ac-tivity of tanshinone IIA in LPS-stimulated RAW264.7 macrophages via miRNAs and TLR4-NF-κB path-way[J]. Inflammation, 2016,39(1):375-384.
[10] Huang L, Ma Q, Li Y , et al. Inhibition of microRNA- 210 suppresses pro-inflammatory response and re-duces acute brain injury of ischemic stroke in mice[J]. Exp Neurol, 2018,300:41-50.
[11] Luan X, Zhou X, Trombetta-eSilva J, , et al. MicroRNAs and periodontal homeostasis[J]. J Dent Res, 2017,96(5):491-500.
[12] Lee YH, Na HS, Jeong SY , et al. Comparison of in-flammatory microRNA expression in healthy and periodontitis tissues[J]. Biocell, 2011,35(2):43-49.
[13] Xie YF, Shu R, Jiang SY , et al. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues[J]. Int J Oral Sci, 2011,3(3):125-134.
[14] Stoecklin-Wasmer C, Guarnieri P, Celenti R , et al. MicroRNAs and their target genes in gingival tissues[J]. J Dent Res, 2012,91(10):934-940.
[15] Ogata Y, Matsui S, Kato A , et al. MicroRNA expre-ssion in inflamed and noninflamed gingival tissues from Japanese patients[J]. J Oral Sci, 2014,56(4):253-260.
[16] Venugopal P, Koshy T, Lavu V , et al. Differential expression of microRNAs let-7a, miR-125b, miR- 100, and miR-21 and interaction with NF-κB pathway genes in periodontitis pathogenesis[J]. J Cell Physiol, 2018,233(8):5877-5884.
[17] Amaral SA, Pereira TSF, Brito JAR , et al. Comparison of miRNA expression profiles in individuals with chronic or aggressive periodontitis[J]. Oral Dis, 2019,25(2):561-568.
[18] Motedayyen H, Ghotloo S, Saffari M , et al. Evalua-tion of microRNA-146a and its targets in gingival tissues of patients with chronic periodontitis[J]. J Periodontol, 2015,86(12):1380-1385.
[19] Radović N, Nikolić Jakoba N, Petrović N , et al. MicroRNA-146a and microRNA-155 as novel cre-vicular fluid biomarkers for periodontitis in nondia-betic and type 2 diabetic patients[J]. J Clin Periodon- tol, 2018,45(6):663-671.
[20] Yoneda T, Tomofuji T, Ekuni D , et al. Serum micro-RNAs and chronic periodontitis: a case-control study[J]. Arch Oral Biol, 2019,101:57-63.
[21] Tomofuji T, Yoneda T, Machida T , et al. MicroRNAs as serum biomarkers for periodontitis[J]. J Clin Pe-riodontol, 2016,43(5):418-425.
[22] Bagavad Gita J, George AV, Pavithra N , et al. Dysre-gulation of miR-146a by periodontal pathogens: a risk for acute coronary syndrome[J]. J Periodontol, 2019,90(7):756-765.
[23] Guo M, Mao X, Ji Q , et al. miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome[J]. Immunol Cell Biol, 2010,88(5):555-564.
[24] Nahid MA, Rivera M, Lucas A , et al. Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE -/- mice during experimental periodontal disease [J]. Infect Immun, 2011,79(4):1597-1605.
[25] Xuan Y, Gao Y, Huang H , et al. Tanshinone IIA at-tenuates atherosclerosis in apolipoprotein E knockout mice infected with Porphyromonas gingivalis[J]. Inflammation, 2017,40(5):1631-1642.
[26] Jia R, Hashizume-Takizawa T, Du Y , et al. Aggregati-bacter actinomycetemcomitans induces Th17 cells in atherosclerotic lesions[J]. Pathog Dis, 2015,73(3). doi: 10.1093/femspd/ftu027.
[27] Hajishengallis G . Periodontitis: from microbial im-mune subversion to systemic inflammation[J]. Nat Rev Immunol, 2015,15(1):30-44.
[28] Urbich C, Kuehbacher A, Dimmeler S . Role of microRNAs in vascular diseases, inflammation, and angiogenesis[J]. Cardiovasc Res, 2008,79(4):581-588.
[29] Renzi TA, Rubino M, Gornati L , et al. MiR-146b mediates endotoxin tolerance in human phagocytes[J]. Mediators Inflamm, 2015,2015:145305.
[30] Li X, Ji Z, Li S , et al. miR-146a-5p antagonized AGEs- and P.g-LPS-induced ABCA1 and ABCG1 dysregulation in macrophages via IRAK-1 downre-gulation[J]. Inflammation, 2015,38(5):1761-1768.
[31] Molteni M, Bosi A, Saturni V , et al. MiR-146a in-duction by cyanobacterial lipopolysaccharide anta-gonist (CyP) mediates endotoxin cross-tolerance[J]. Sci Rep, 2018,8(1):11367.
[32] Molteni M, Bosi A, Rossetti C . The effect of cyano-bacterial LPS antagonist (CyP) on cytokines and micro-RNA expression induced by Porphyromonas gingivalis LPS[J]. Toxins (Basel), 2018,10(7). doi: 10.3390/toxins10070290.
[33] Honda T, Takahashi N, Miyauchi S , et al. Porphyro-monas gingivalis lipopolysaccharide induces miR-146a without altering the production of inflammatory cytokines[J]. Biochem Biophys Res Commun, 2012,420(4):918-925.
[34] Tsai PC, Liao YC, Wang YS , et al. Serum microRNA- 21 and microRNA-221 as potential biomarkers for cerebrovascular disease[J]. J Vasc Res, 2013,50(4):346-354.
[35] Canfrán-Duque A, Rotllan N, Zhang X , et al. Macro-phage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis[J]. EMBO Mol Med, 2017,9(9):1244-1262.
[36] Ruan Q, Wang P, Wang T , et al. MicroRNA-21 re-gulates T-cell apoptosis by directly targeting the tumor suppressor gene Tipe2[J]. Cell Death Dis, 2014,5:e1095.
[37] Niu J, Shi Y, Tan G , et al. DNA damage induces NF-κB-dependent microRNA-21 up-regulation and promotes breast cancer cell invasion[J]. J Biol Chem, 2012,287(26):21783-21795.
[38] Shin VY, Jin H, Ng EK , et al. NF-κB targets miR-16 and miR-21 in gastric cancer: involvement of prosta-glandin E receptors[J]. Carcinogenesis, 2011,32(2):240-245.
[39] Das A, Ganesh K, Khanna S , et al. Engulfment of apoptotic cells by macrophages: a role of microRNA- 21 in the resolution of wound inflammation[J]. J Immunol, 2014,192(3):1120-1129.
[40] Ji R, Cheng Y, Yue J , et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation[J]. Circ Res, 2007,100(11):1579-1588.
[41] Perdiguero E, Sousa-Victor P, Ruiz-Bonilla V , et al. p38/MKP-1-regulated AKT coordinates macrophage transitions and resolution of inflammation during tissue repair[J]. J Cell Biol, 2011,195(2):307-322.
[42] Wu Z, Lu H, Sheng J , et al. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2[J]. FEBS Lett, 2012,586(16):2459-2467.
[43] Xue X, Qiu Y, Yang HL . Immunoregulatory role of microRNA-21 in macrophages in response to Bacillus calmette-guerin infection involves modulation of the TLR4/MyD88 signaling pathway[J]. Cell Physiol Biochem, 2017,42(1):91-102.
[44] Zhou W, Su L, Duan X , et al. MicroRNA-21 down-regulates inflammation and inhibits periodontitis[J]. Mol Immunol, 2018,101:608-614.
[45] Yang X, Pan Y, Xu X , et al. Sialidase deficiency in Porphyromonas gingivalis increases IL-12 secretion in stimulated macrophages through regulation of CR3, lncRNA GAS5 and miR-21[J]. Front Cell Infect Mi-crobiol, 2018,8:100.
[46] Huck O, Al-Hashemi J, Poidevin L , et al. Identi-fication and characterization of microRNA differen-tially expressed in macrophages exposed to Por-phyromonas gingivalis infection[J]. Infect Immun, 2017,85(3). doi: 10.1128/IAI.00771-16.
[47] Na HS, Park MH, Song YR , et al. Elevated micro-RNA-128 in periodontitis mitigates tumor necrosis factor-α response via p38 signaling pathway in macrophages[J]. J Periodontol, 2016,87(9):e173-e182.
[48] Park MH, Park E, Kim HJ , et al. Porphyromonas gingivalis-induced miR-132 regulates TNFα expre-ssion in THP-1 derived macrophages[J]. Springer-Plus, 2016,5:761.
[49] Naqvi AR, Fordham JB, Khan A , et al. MicroRNAs responsive to Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis LPS modulate ex-pression of genes regulating innate immunity in human macrophages[J]. Innate Immun, 2014,20(5):540-551.
[50] Fordham JB, Naqvi AR, Nares S. miR-24 regulates macrophage polarization and plasticity[J]. J Clin Cell Immunol, 2015,6:(5)pii: 362.
[51] Pessi T, Viiri LE, Raitoharju E , et al. Interleukin-6 and microRNA profiles induced by oral bacteria in human atheroma derived and healthy smooth muscle cells[J]. Springerplus, 2015,4:206.
[52] Laffont B, Rayner KJ . MicroRNAs in the pathobio-logy and therapy of atherosclerosis[J]. Can J Cardiol, 2017,33(3):313-324.
[1] 王晓宇,朱昭蓉,吴亚菲,赵蕾. 中性粒细胞细胞外陷阱网与牙周炎的相关性研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 304-310.
[2] 陈斌,徐蓉蓉,张家鼎,闫福华. 重度牙周炎患牙的保存治疗[J]. 国际口腔医学杂志, 2020, 47(2): 125-130.
[3] 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120.
[4] 张智颖,刘东娟,潘亚萍. 牙龈卟啉单胞菌外膜囊泡的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 670-674.
[5] 姜亦洋,刘怡. 甲基化对牙周炎发生与发展的影响及临床应用[J]. 国际口腔医学杂志, 2019, 46(5): 593-603.
[6] 张佳喻,罗宁,苗棣,应绚,陈悦. 意向性牙再植治疗重度牙周炎患牙的临床研究[J]. 国际口腔医学杂志, 2019, 46(4): 400-406.
[7] 原振英,管翠强,南欣荣. DNA甲基化与口腔疾病的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 437-441.
[8] 郭淑娟, 刘倩, 丁一. 牙周病和植体周病国际新分类简介[J]. 国际口腔医学杂志, 2019, 46(2): 125-134.
[9] 吕慧欣,杜留熠,王鹞,于维先,任静宜,顾芯铭,周延民. 炎症小体在牙周炎中的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 186-190.
[10] 聂然,郭天奇,李雪,裴婷婷,秦勤,周延民. 与牙周炎相关的组织蛋白酶研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 197-202.
[11] 王鹞,吕慧欣,杜留熠,顾芯铭,任静宜,于维先,周延民. 软脑膜在外周炎症影响神经炎症过程中的作用[J]. 国际口腔医学杂志, 2019, 46(2): 223-227.
[12] 刘志凯,王淳艺,李春洁. 胚胎小鼠颌下腺分支形态发生及其影响因素[J]. 国际口腔医学杂志, 2019, 46(1): 43-47.
[13] 杨卓,张盛丹,刘程程,丁一. 侵袭性牙周炎唾液诊断标记物的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 55-61.
[14] 冯顶丽,卓丽丹,芦笛,郭红延. 微小RNA调节间充质干细胞软骨分化机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 640-645.
[15] 方川,李雅冬. 微小RNA在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 646-651.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[2] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .
[4] 王金涛 刘美娟 孙宏晨 欧阳喈. 牙槽嵴牵张成骨[J]. 国际口腔医学杂志, 2004, 31(02): 146 -148 .
[5] 蔡霞,李成章. 前列腺素E_2受体EP亚型在牙周炎发病机制中的作用[J]. 国际口腔医学杂志, 2005, 32(06): 461 -462 .
[6] 陈晓 蒋文晖 王文梅. 念珠菌性白斑的研究概况[J]. 国际口腔医学杂志, 2004, 31(02): 138 -140 .
[7] 黄维佳综述 平飞云审校. 涎腺黏膜相关淋巴组织淋巴瘤的研究进展[J]. 国际口腔医学杂志, 2009, 36(5): 577 -579 .
[8] 李文慧,鲜苏琴. 银的抗菌性能及其在种植体表面的抗菌改性研究[J]. 国际口腔医学杂志, 2008, 35(S1): .
[9] 聂盼 李婧 李伟. Activator 治疗骨性Ⅱ类畸形的临床应用[J]. 国际口腔医学杂志, 2011, 38(4): 380 -383 .
[10] 李佳岭1 李小兵2 李佳园3. 内收下切牙对下切牙区牙槽骨改建的影响[J]. 国际口腔医学杂志, 2011, 38(4): 392 -394 .