国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (2): 244-248.doi: 10.7518/gjkq.2019014

• 综述 • 上一篇    

伴糖尿病患者种植骨缺损的病因及治疗的研究进展

赵鹏飞,王琪()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院修复科 成都 610041
  • 收稿日期:2018-04-09 修回日期:2018-10-12 出版日期:2019-03-01 发布日期:2019-03-15
  • 通讯作者: 王琪 E-mail:wqinno8751@gmail.com
  • 作者简介:赵鹏飞,硕士,Email: zhaopengfei@stu.scu.edu.cn
  • 基金资助:
    国家自然科学基金(81870779);四川省国际科技合作与交流研发项目(2017HH0078)

Research progress on the etiology and therapy of bone defect during dental implantation under diabetic condition

Pengfei Zhao,Qi Wang()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-04-09 Revised:2018-10-12 Online:2019-03-01 Published:2019-03-15
  • Contact: Qi Wang E-mail:wqinno8751@gmail.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81870779);International Science and Technology Cooperation and Exchange Research Project of Sichuan Province(2017HH0078)

摘要:

糖尿病患者因其全身及口腔局部原因互相影响促进,常导致牙种植前后颌骨缺损的产生,引起骨整合的失败,为种植治疗带来了挑战。目前,针对此类骨缺损的治疗仍然是临床难点,但已有越来越多的研究关注糖尿病患者种植骨缺损的发生机制及修复方法,随着病因机制的深入研究,综合治疗方案也在逐渐完善,本文就全身和局部两方面对伴糖尿病患者种植骨缺损的病因及治疗研究进展展开综述,为临床治疗提供新的理念和思路。

关键词: 糖尿病, 高血糖, 种植, 骨缺损, 骨整合

Abstract:

Diabetes mellitus is associated with alveolar bone defects during implant therapy due to the mutual influence of its systemic complications and local oral conditions, which cause osseointegration failure and pose a challenge for treatment. The treatment of such bone defects is still clinically difficult at present. However, a growing number of studies focused on the mechanism and repair methods for the bone defect. With the in-depth study of the etiology mechanism, comprehensive treatment programs are gradually improving. This paper reviewed the etiology and treatment of the alveolar bone defect in diabetic condition from both systemic and local aspects and provided new ideas for clinical treatment.

Key words: diabetes mellitus, hyperglycemia, dental implant, bone defect, osseointegration

中图分类号: 

  • R783.4
[1] Chrcanovic BR, Albrektsson T, Wennerberg A . Dia-betes and oral implant failure: a systematic review[J]. J Dent Res, 2014,93(9):859-867.
doi: 10.1177/0022034514538820
[2] Al-Sowygh ZH, Ghani SMA, Sergis K , et al. Peri-implant conditions and levels of advanced glycation end products among patients with different glycemic control[J]. Clin Implant Dent Relat Res, 2018,20(3):345-351.
doi: 10.1038/sj.bdj.2018.248
[3] Yamamoto M, Sugimoto T . Advanced glycation end products, diabetes, and bone strength[J]. Curr Osteo-poros Rep, 2016,14(6):320-326.
doi: 10.1007/s11914-016-0332-1 pmid: 27704396
[4] Meng HZ, Zhang WL, Liu F , et al. Advanced glycation end products affect osteoblast proliferation and func-tion by modulating autophagy via the receptor of advanced glycation end products/raf protein/mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase (RAGE/Raf/MEK/ERK) pathway[J]. J Biol Chem, 2015,290(47):28189-28199.
doi: 10.1074/jbc.M115.669499
[5] Yang X, Gandhi C, Rahman MM , et al. Age-related effects of advanced glycation end products (ages) in bone matrix on osteoclastic resorption[J]. Calcif Tissue Int, 2015,97(6):592-601.
doi: 10.1007/s00223-015-0042-1 pmid: 26204848
[6] Franceschi C, Bonafè M, Valensin S , et al. Inflamm-aging. An evolutionary perspective on immunosenes-cence[J]. Ann N Y Acad Sci, 2000,908:244-254.
[7] Kour S, Rath PC . Long noncoding RNAs in aging and age-related diseases[J]. Ageing Res Rev, 2016,26:1-21.
doi: 10.1016/j.arr.2015.12.001 pmid: 26655093
[8] Ko KI, Coimbra LS, Tian C , et al. Diabetes reduces mesenchymal stem cells in fracture healing through a TNFα-mediated mechanism[J]. Diabetologia, 2015,58(3):633-642.
doi: 10.1007/s00125-014-3470-y pmid: 4346353
[9] Algate K, Haynes DR, Bartold PM , et al. The effects of tumour necrosis factor-α on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes[J]. J Periodont Res, 2016,51(5):549-566.
doi: 10.1111/jre.12339 pmid: 26667183
[10] Bhatti JS, Kumar S, Vijayan M , et al. Therapeutic strategies for mitochondrial dysfunction and oxidative stress in age-related metabolic disorders[J]. Prog Mol Biol Transl Sci, 2017,146:13-46.
doi: 10.1016/B978-0-12-385071-3.00012-5 pmid: 21075325
[11] Patil VS, Patil VP, Gokhale N , et al. Chronic perio-dontitis in type 2 diabetes mellitus: oxidative stress as a common factor in periodontal tissue injury[J]. J Clin Diagn Res, 2016, 10(4): BC12-BC16.
doi: 10.7860/JCDR/2016/17350.7542 pmid: 4866088
[12] Kose O, Arabaci T, Kara A , et al. Effects of mela-tonin on oxidative stress index and alveolar bone loss in diabetic rats with periodontitis[J]. J Periodontol, 2016,87(5):e82-e90.
doi: 10.1902/jop.2016.150541 pmid: 26832833
[13] Reddy MA, Zhang EL, Natarajan R . Epigenetic me-chanisms in diabetic complications and metabolic memory[J]. Diabetologia, 2015,58(3):443-455.
doi: 10.1007/s00125-014-3462-y pmid: 25481708
[14] Gallagher KA, Joshi A, Carson WF , et al. Epigenetic changes in bone marrow progenitor cells influence the inflammatory phenotype and alter wound healing in type 2 diabetes[J]. Diabetes, 2015,64(4):1420-1430.
doi: 10.2337/db14-0872 pmid: 4375075
[15] Mori K, Kitazawa R, Kondo T , et al. Diabetic osteo-penia by decreased β-catenin signaling is partly in-duced by epigenetic derepression of sFRP-4 gene[J]. PLoS One, 2014,9(7):e102797.
doi: 10.1371/journal.pone.0102797
[16] Babaev EA, Balmasova IP, Mkrtumyan AM , et al. Metagenomic analysis of gingival sulcus microbiota and pathogenesis of periodontitis associated with type 2 diabetes mellitus[J]. Bull Exp Biol Med, 2017,163(6):718-721.
doi: 10.1007/s10517-017-3888-6
[17] Preshaw PM, Alba AL, Herrera D , et al. Periodontitis and diabetes: a two-way relationship[J]. Diabeto-logia, 2012,55(1):21-31.
doi: 10.1007/s00125-011-2342-y pmid: 3228943
[18] Sonnenschein SK, Meyle J . Local inflammatory reactions in patients with diabetes and periodontitis[J]. Periodontol 2000, 2015,69(1):221-254.
doi: 10.1111/prd.12089 pmid: 26252411
[19] Pradeep AR, Agarwal E, Bajaj P , et al. 4-Hydroxy-2-nonenal, an oxidative stress marker in crevicular fluid and serum in type 2 diabetes with chronic periodon-titis[J]. Contemp Clin Dent, 2013,4(3):281-285.
doi: 10.4103/0976-237X.118342 pmid: 24124291
[20] Monje A, Catena A, Borgnakke WS . Association be- tween diabetes mellitus/hyperglycaemia and peri-im-plant diseases: systematic review and meta-analysis[J]. J Clin Periodontol, 2017,44(6):636-648.
doi: 10.1111/jcpe.12724 pmid: 28346753
[21] Javed F, Romanos GE . Impact of diabetes mellitus and glycemic control on the osseointegration of den-tal implants: a systematic literature review[J]. J Pe-riodontol, 2009,80(11):1719-1730.
doi: 10.1902/jop.2009.090283 pmid: 19905942
[22] Serrão CR, Bastos MF, Cruz DF , et al. Role of met-formin in reversing the negative impact of hyper-glycemia on bone healing around implants inserted in type 2 diabetic rats[J]. Int J Oral Maxillofac Im-plants, 2017,32(3):547-554.
doi: 10.11607/jomi.5754 pmid: 28494038
[23] Aguilar-Salvatierra A, Calvo-Guirado JL, González-Jaranay M , et al. Peri-implant evaluation of im-mediately loaded implants placed in esthetic zone in patients with diabetes mellitus type 2: a two-year study[J]. Clin Oral Implants Res, 2016,27(2):156-161.
doi: 10.1111/clr.12552 pmid: 25623884
[24] Wu YY, Yu T, Yang XY , et al. Vitamin D3 and insulin combined treatment promotes titanium implant os-seointegration in diabetes mellitus rats[J]. Bone, 2013,52(1):1-8.
doi: 10.1016/j.bone.2012.09.005 pmid: 22985888
[25] Morris HF, Ochi S, Winkler S . Implant survival in patients with type 2 diabetes: placement to 36 months[J]. Ann Periodontol, 2000,5(1):157-165.
doi: 10.1902/annals.2000.5.1.157 pmid: 11885176
[26] Schwartz-Arad D, Levin L, Sigal L . Surgical success of intraoral autogenous block onlay bone grafting for alveolar ridge augmentation[J]. Implant Dent, 2005,14(2):131-138.
doi: 10.1097/01.id.0000165031.33190.0d pmid: 15968184
[27] Tawil G, Younan R, Azar P , et al. Conventional and advanced implant treatment in the type Ⅱ diabetic patient: surgical protocol and long-term clinical re-sults[J]. Int J Oral Maxillofac Implants, 2008,23(4):744-752.
doi: 10.1016/j.ijom.2008.04.009 pmid: 18807573
[28] Erdogan ö, Uçar Y, Tatlı U , et al. A clinical prospec-tive study on alveolar bone augmentation and dental implant success in patients with type 2 diabetes[J]. Clin Oral Implants Res, 2015,26(11):1267-1275.
doi: 10.1111/clr.12450 pmid: 25041273
[29] Yu M, Zhou W, Song YL , et al. Development of mesenchymal stem cell-implant complexes by cul-tured cells sheet enhances osseointegration in type 2 diabetic rat model[J]. Bone, 2011,49(3):387-394.
doi: 10.1016/j.bone.2011.05.025 pmid: 21672646
[30] Schlegel KA, Prechtl C, Möst T , et al. Osseointe-gration of SLActive implants in diabetic pigs[J]. Clin Oral Implants Res, 2013,24(2):128-134.
doi: 10.1111/j.1600-0501.2011.02380.x pmid: 22111960
[31] Ma XY, Feng YF, Ma ZS , et al. The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite composite coating on porous titanium surfaces[J]. Biomaterials, 2014,35(26):7259-7270.
doi: 10.1016/j.biomaterials.2014.05.028 pmid: 24912815
[32] Li X, Ma XY, Feng YF , et al. Osseointegration of chitosan coated porous titanium alloy implant by reactive oxygen species-mediated activation of the PI3K/AKT pathway under diabetic conditions[J]. Biomaterials, 2015,36:44-54.
doi: 10.1016/j.biomaterials.2014.09.012 pmid: 25308520
[33] Al Amri MD, Kellesarian SV, Al-Kheraif AA , et al. Effect of oral hygiene maintenance on HbA1c levels and peri-implant parameters around immediately-loaded dental implants placed in type-2 diabetic patients: 2 years follow-up[J]. Clin Oral Implants Res, 2016,27(11):1439-1443.
doi: 10.1111/clr.12758
[34] Figuero E, Graziani F, Sanz I , et al. Management of peri-implant mucositis and peri-implantitis[J]. Perio-dontol 2000, 2014,66(1):255-273.
doi: 10.1111/prd.12049 pmid: 25123773
[35] Wang Q, Li H, Xiao Y , et al. Locally controlled de-livery of TNFα antibody from a novel glucose-sen-sitive scaffold enhances alveolar bone healing in dia- betic conditions[J]. J Control Release, 2015,206:232-242.
doi: 10.1016/j.jconrel.2015.03.019 pmid: 25796348
[1] 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444.
[2] 张敏,万浩元. 种植体周围炎药物治疗与激光治疗的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 463-470.
[3] 吴秋月,李治邦. 药物辅助治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 471-477.
[4] 肖雨晗,于海洋. 种植义齿邻接触丧失的研究现状[J]. 国际口腔医学杂志, 2020, 47(2): 202-205.
[5] 田青鹭,赵志河. 微型种植体在口腔正畸中稳定性的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 212-218.
[6] 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224.
[7] 王剑,张鑫. 种植盾构术修复前牙外伤1例[J]. 国际口腔医学杂志, 2020, 47(1): 10-16.
[8] 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94.
[9] 蔡潇潇. 美学区数字化种植策略与流程[J]. 国际口腔医学杂志, 2019, 46(6): 621-630.
[10] 黄萧瑜,李明云,周学东,程磊. 全身及局部因素对种植体周围稳态的影响[J]. 国际口腔医学杂志, 2019, 46(6): 730-734.
[11] 青薇,黄丽娟,郑佳俊,任静,李成龙,庹嫱,任小华,牟雁东. 16S核糖体DNA高通量测序研究种植体龈沟液微生物的变化[J]. 国际口腔医学杂志, 2019, 46(5): 532-539.
[12] 付栩楠,谢志刚. 种植固定修复中基台机械并发症的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 571-577.
[13] 颜丹,张锡忠,王建国. 螺纹深度对支抗微种植体和颌骨影响的三维有限元分析[J]. 国际口腔医学杂志, 2019, 46(4): 387-392.
[14] 郑铮,陈文川. 生物学宽度概念在口腔种植中的结构、尺度及功能意义[J]. 国际口腔医学杂志, 2019, 46(4): 481-487.
[15] 于婉琦,周延民,赵静辉. 口腔种植体新材料的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 488-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 李子夏,包广洁. 龋病病因相关因素的激光扫描共聚焦显微镜研究[J]. 国际口腔医学杂志, 2008, 35(S1): .