国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (3): 302-307.doi: 10.7518/gjkq.2019006

• 综述 • 上一篇    下一篇

节律基因调控成骨和破骨活动机制的研究进展

胡巍,王译凡,袁一方,李影,郭斌()   

  1. 中国人民解放军总医院口腔科 北京 100853
  • 收稿日期:2018-08-21 修回日期:2019-02-25 出版日期:2019-05-01 发布日期:2019-06-05
  • 通讯作者: 郭斌 E-mail:guobin0408@126.com
  • 作者简介:胡巍,医师,硕士,Email:huwei1109@126.com
  • 基金资助:
    国家自然科学基金面上项目(81470754)

Research progress on regulatory mechanism of the circadian clock genes on osteogenesis and bone resorption

Wei Hu,Yifan Wang,Yifang Yuan,Ying Li,Bin Guo()   

  1. Dept. of Stomatology, The People’s Liberation Army General Hospital, Beijing 100853, China
  • Received:2018-08-21 Revised:2019-02-25 Online:2019-05-01 Published:2019-06-05
  • Contact: Bin Guo E-mail:guobin0408@126.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81470754)

摘要:

人的近日节律系统是以节律基因为核心,调控24 h体内多种节律性生理活动的主要机制。成骨活动与破骨活动两者的动态平衡是骨组织行使功能的基础。节律基因与成骨和破骨活动关系密切,在骨重建中起到重要调控作用,可能为骨再生医学的调控靶点。本文将综述近日节律系统的构成及近年研究节律基因调控成骨和破骨活动机制的新进展,可能为骨再生重建治疗提供新的思路。

关键词: 生物节律, 节律基因, 成骨分化, 破骨细胞

Abstract:

The internal circadian timing system of human is a major regulatory network mainly interacting circadian genes for regulating 24 h rhythms of many metabolic and physiological processes. The dynamic balance of osteogenesis and bone resorption is the foundation of normal bone function. The circadian genes, which are closely related to osteogenesis and bone resorption, play an essential regulatory role in bone remolding and may be targets of bone regenerative medicine. This review focuses on the circadian timing system structure and the recent progress of research on regulatory mechanism of osteogenesis and bone resorption. We aim to possibly determine a novel approach for bone reconstruction and regenerative therapy.

Key words: biorhythms, circadian gene, osteogenic differentiation, osteoclast

中图分类号: 

  • Q753
[1] Dibner C, Schibler U, Albrecht U . The mammalian circadian timing system: organization and coordination of central and peripheral clocks[J]. Annu Rev Physiol, 2010,72:517-549.
doi: 10.1146/annurev-physiol-021909-135821
[2] Fuhr L, Abreu M, Pett P , et al. Circadian systems biology: when time matters[J]. Comput Struct Biotechnol J, 2015,13:417-426.
doi: 10.1016/j.csbj.2015.07.001 pmid: 4534520
[3] Borgs L, Beukelaers P, Vandenbosch R , et al. Cell “circadian” cycle: new role for mammalian core clock genes[J]. Cell Cycle, 2009,8(6):832-837.
doi: 10.4161/cc.8.6.7869 pmid: 19221497
[4] Maury E, Hong HK, Bass J . Circadian disruption in the pathogenesis of metabolic syndrome[J]. Diabetes Metab, 2014,40(5):338-346.
doi: 10.1016/j.diabet.2013.12.005
[5] Mazzoccoli G, Pazienza V, Vinciguerra M . Clock genes and clock-controlled genes in the regulation of metabolic rhythms[J]. Chronobiol Int, 2012,29(3):227-251.
doi: 10.3109/07420528.2012.658127
[6] Jagannath A, Taylor L, Wakaf Z , et al. The genetics of circadian rhythms, sleep and health[J]. Hum Mol Genet, 2017,26(R2):R128-R138.
doi: 10.1093/hmg/ddx240 pmid: 28977444
[7] Khaper N, Bailey CDC, Ghugre NR , et al. Implications of disturbances in circadian rhythms for cardiovascular health: a new frontier in free radical biology[J]. Free Radic Biol Med, 2018,119:85-92.
doi: 10.1016/j.freeradbiomed.2017.11.006 pmid: 29146117
[8] Samsa WE, Vasanji A, Midura RJ , et al. Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype[J]. Bone, 2016,84:194-203.
doi: 10.1016/j.bone.2016.01.006 pmid: 26789548
[9] Komoto S, Kondo H, Fukuta O , et al. Comparison of β-adrenergic and glucocorticoid signaling on clock gene and osteoblast-related gene expressions in human osteoblast[J]. Chronobiol Int, 2012,29(1):66-74.
doi: 10.3109/07420528.2011.636496 pmid: 17019725
[10] Song C, Wang J, Kim B , et al. Insights into the role of circadian rhythms in bone metabolism: a promising intervention target[J]. Biomed Res Int, 2018,2018:9156478.
doi: 10.1155/2018/9156478
[11] Reppert SM, Weaver DR . Coordination of circadian timing in mammals[J]. Nature, 2002,418(6901):935-941.
doi: 10.1038/nature00965 pmid: 12198538
[12] Yoo SH, Yamazaki S, Lowrey PL , et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues[J]. Proc Natl Acad Sci U S A, 2004,101(15):5339-5346.
doi: 10.1073/pnas.0308709101 pmid: 14963227
[13] Lowrey PL, Takahashi JS . Mammalian circadian biology: elucidating genome-wide levels of temporal organization[J]. Annu Rev Genomics Hum Genet, 2004,5:407-441.
doi: 10.1146/annurev.genom.5.061903.175925 pmid: 15485355
[14] Takahashi JS . Molecular components of the circadian clock in mammals[J]. Diabetes Obes Metab, 2015,17(Suppl 1):6-11.
doi: 10.1111/dom.12514 pmid: 26332962
[15] Luo W, Li Y, Tang CH , et al. CLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in Drosophila[J]. Genes Dev, 2012,26(22):2536-2549.
doi: 10.1101/gad.200584.112 pmid: 23154984
[16] Robles MS, Humphrey SJ, Mann M . Phosphorylation is a central mechanism for circadian control of metabolism and physiology[J]. Cell Metab, 2017,25(1):118-127.
doi: 10.1016/j.cmet.2016.10.004 pmid: 27818261
[17] Preitner N, Damiola F, Lopez-Molina L , et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator[J]. Cell, 2002,110(2):251-260.
doi: 10.1016/S0092-8674(02)00825-5 pmid: 12150932
[18] Murray IR, West CC, Hardy WR , et al. Natural history of mesenchymal stem cells, from vessel walls to culture vessels[J]. Cell Mol Life Sci, 2014,71(8):1353-1374.
doi: 10.1007/s00018-013-1462-6 pmid: 24158496
[19] Weger M, Diotel N, Dorsemans AC , et al. Stem cells and the circadian clock[J]. Dev Biol, 2017,431(2):111-123.
doi: 10.1016/j.ydbio.2017.09.012 pmid: 28899666
[20] Boucher H, Vanneaux V, Domet T , et al. Circadian clock genes modulate human bone marrow mesenchymal stem cell differentiation, migration and cell cycle[J]. PLoS One, 2016,11(1):e0146674.
doi: 10.1371/journal.pone.0146674 pmid: 4704833
[21] Meyer T, Kneissel M, Mariani J , et al. In vitro and in vivo evidence for orphan nuclear receptor RORalpha function in bone metabolism[J]. Proc Natl Acad Sci U S A, 2000,97(16):9197-9202.
doi: 10.1073/pnas.150246097 pmid: 10900268
[22] He Y, Lin F, Chen Y , et al. Overexpression of the circadian clock gene Rev-erbα affects murine bone mesenchymal stem cell proliferation and osteogenesis[J]. Stem Cells Dev, 2015,24(10):1194-1204.
doi: 10.1089/scd.2014.0437 pmid: 25539035
[23] Li X, Liu N, Wang Y , et al. Brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein-1 cooperates with glycogen synthase kinase-3β to regulate osteogenesis of bone-marrow mesenchymal stem cells in type 2 diabetes[J]. Mol Cell Endocrinol, 2017,440:93-105.
doi: 10.1016/j.mce.2016.10.001
[24] Sahar S, Zocchi L, Kinoshita C , et al. Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation[J]. PLoS One, 2010,5(1):e8561.
doi: 10.1371/journal.pone.0008561 pmid: 2797305
[25] Marcheva B, Ramsey KM, Buhr ED , et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes[J]. Nature, 2010,466(7306):627-631.
doi: 10.1038/nature09253 pmid: 2920067
[26] Sato F, Sato H, Jin D , et al. Smad3 and Snail show circadian expression in human gingival fibroblasts, human mesenchymal stem cell, and in mouse liver[J]. Biochem Biophys Res Commun, 2012,419(2):441-446.
doi: 10.1016/j.bbrc.2012.02.076 pmid: 22382019
[27] Spengler ML, Kuropatwinski KK, Comas M , et al. Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription[J]. Proc Natl Acad Sci U S A, 2012,109(37):E2457-E2465.
doi: 10.1073/pnas.1206274109
[28] 龙洁, 田卫东, 郑晓辉 , 等. 牵张成骨对山羊下颌骨成骨细胞增殖节律的影响[J]. 华西口腔医学杂志, 2003,21(2):144-146, 152.
doi: 10.3321/j.issn:1000-1182.2003.02.020
Long J, Tian WD, Zheng XH , et al. Effect of distraction osteogenesis on circadian rhythm of proliferation index of mandibular osteoblast in goat[J]. West Chin J Stomatol, 2003,21(2):144-146, 152.
doi: 10.3321/j.issn:1000-1182.2003.02.020
[29] Wang Y, Nizkorodov A, Riemenschneider K , et al. Impaired bone formation in Pdia3 deficient mice[J]. PLoS One, 2014,9(11):e112708.
doi: 10.1371/journal.pone.0112708 pmid: 25405762
[30] Santana-Codina N, Carretero R, Sanz-Pamplona R , et al. A transcriptome-proteome integrated network identifies endoplasmic reticulum thiol oxidoreductase (ERp57) as a hub that mediates bone metastasis[J]. Mol Cell Proteomics, 2013,12(8):2111-2125.
doi: 10.1074/mcp.M112.022772
[31] Yuan G, Hua B, Yang Y , et al. The circadian gene clock regulates bone formation via PDIA3[J]. J Bone Miner Res, 2017,32(4):861-871.
doi: 10.1002/jbmr.3046 pmid: 27883226
[32] Fu L, Patel MS, Karsenty G . The circadian modulation of leptin-controlled bone formation[J]. Prog Brain Res, 2006,153:177-188.
doi: 10.1016/S0079-6123(06)53010-9
[33] Hirai T . Regulation of clock genes by adrenergic receptor signaling in osteoblasts[J]. Neurochem Res, 2018,43(1):120-126.
doi: 10.1007/s11064-017-2365-y pmid: 28752422
[34] Hirai T, Tanaka K, Togari A . β-adrenergic receptor signaling regulates Ptgs2 by driving circadian gene expression in osteoblasts[J]. J Cell Sci, 2014,127(Pt 17):3711-3719.
doi: 10.1242/jcs.148148 pmid: 24994935
[35] Hirai T, Tanaka K, Togari A . α1-adrenergic receptor signaling in osteoblasts regulates clock genes and bone morphogenetic protein 4 expression through up-regulation of the transcriptional factor nuclear factor IL-3 (Nfil3)/E4 promoter-binding protein 4 (E4BP4)[J]. J Biol Chem, 2014,289(24):17174-17183.
doi: 10.1074/jbc.M113.546135
[36] Takeda S, Elefteriou F, Levasseur R , et al. Leptin regulates bone formation via the sympathetic nervous system[J]. Cell, 2002,111(3):305-317.
doi: 10.1016/S0092-8674(02)01049-8 pmid: 12419242
[37] Min HY, Kim KM, Wee G , et al. Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells[J]. Life Sci, 2016,162:41-46.
doi: 10.1016/j.lfs.2016.08.002 pmid: 27506892
[38] Cappellen D, Luong-Nguyen NH, Bongiovanni S , et al. Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappa B[J]. J Biol Chem, 2002,277(24):21971-21982.
doi: 10.1074/jbc.M200434200 pmid: 11923298
[39] Xu C, Ochi H, Fukuda T , et al. Circadian clock regulates bone resorption in mice[J]. J Bone Miner Res, 2016,31(7):1344-1355.
doi: 10.1002/jbmr.2803 pmid: 26841172
[40] Fujihara Y, Kondo H, Noguchi T , et al. Glucocorticoids mediate circadian timing in peripheral osteoclasts resulting in the circadian expression rhythm of osteoclast-related genes[J]. Bone, 2014,61:1-9.
doi: 10.1016/j.bone.2013.12.026 pmid: 24389417
[41] Kearns AE, Khosla S, Kostenuik PJ . Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease[J]. Endocr Rev, 2008,29(2):155-192.
doi: 10.1210/er.2007-0014
[1] 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31.
[2] 朱俊瑾,周佳琦,伍颖颖. 哺乳动物雷帕霉素靶蛋白复合物1介导的自噬对骨代谢的调控[J]. 国际口腔医学杂志, 2020, 47(1): 84-89.
[3] 卢可心,张迪亚,吴燕岷. 蛋白酶激活受体在牙周组织细胞中相关作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 657-662.
[4] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[5] 张誉泓,戚孟春,董伟,孙红. CaMKi>Ⅱδ基因沉默对破骨细胞分化功能及c-fosi>/c-juni>/CREBi>基因的影响[J]. 国际口腔医学杂志, 2019, 46(4): 420-425.
[6] 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436.
[7] 高鑫,曾融生. 骨保护素在口腔领域的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 316-319.
[8] 李婷婷,张玉峰,王若茜,黄智庆,谢律,薛艺凡,王宇蓝. 石墨烯及其衍生物改性复合材料促成骨机制和应用的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 673-677.
[9] 郝奕霖, 房付春, 吴补领. 微小RNA在人牙周膜来源细胞成骨分化中的作用[J]. 国际口腔医学杂志, 2018, 45(1): 46-49.
[10] 伍彩娟, 杨岚, 郭吕华. 降钙素基因相关肽在骨组织再生中的作用及机制[J]. 国际口腔医学杂志, 2017, 44(4): 488-492.
[11] 崔跃, 姜欢, 胡敏. 破骨细胞蛋白酪氨酸磷酸酶与正畸移动牙牙根吸收的关系[J]. 国际口腔医学杂志, 2017, 44(1): 87-91.
[12] 侯玉帛1 刘歆婵2 于海燕1 崔磊华3 于维先4. 牙龈蛋白及其对破骨和成骨细胞功能的影响[J]. 国际口腔医学杂志, 2016, 43(5): 609-613.
[13] 周正 赵长铭 焦凯 王美青. 交感神经系统-肾上腺素能受体对骨改建的调节作用[J]. 国际口腔医学杂志, 2015, 42(3): 348-351.
[14] 孟庆阳,郑嵘,朱阳,王丹丹,吴立鹏,孙宏晨. 破骨细胞分化因子及其信号转导通路[J]. 国际口腔医学杂志, 2015, 42(2): 189-193.
[15] 司家文1 郭礼和2 沈国芳1. 羊膜上皮细胞的生物学特性和骨向分化[J]. 国际口腔医学杂志, 2014, 41(5): 575-578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .