国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (6): 646-651.doi: 10.7518/gjkq.2018.06.005

• RNA专栏 • 上一篇    下一篇

微小RNA在口腔鳞状细胞癌中的研究进展

方川,李雅冬()   

  1. 重庆医科大学附属第一医院口腔颌面外科 重庆 630014
  • 收稿日期:2017-11-20 修回日期:2018-06-11 出版日期:2018-11-01 发布日期:2018-11-15
  • 通讯作者: 李雅冬
  • 作者简介:方川,硕士,Email: 244265126@qq.com
  • 基金资助:
    重庆市卫生与计划生育委员会医学高端后备人才培养项目(2017HBRC004)

Investigative progresses of microRNA in oral squamous cell carcinoma

Chuan Fang,Yadong Li()   

  1. Dept. of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 630014, China
  • Received:2017-11-20 Revised:2018-06-11 Online:2018-11-01 Published:2018-11-15
  • Contact: Yadong Li
  • Supported by:
    This study was supported by Training Program for Medical Supreme Reserve Talents of Chongqing National Health and Family Planning Commission(2017HBRC004)

摘要:

微小RNA(miRNA)是一类由内源性基因编码的非编码单链RNA分子,参与基因转录后调控。在口腔鳞状细胞癌研究中,miRNA的异常表达可通过靶基因或信号通路影响肿瘤的生长,肿瘤细胞的凋亡、侵袭、转移、放射治疗与化学治疗敏感性等多个方面,其可能作为早期诊断和预后的标志物,具有良好的临床应用潜力。本文对miRNA在口腔鳞状细胞癌的异常表达,以及miRNA-靶基因/下游信号通路-肿瘤效应进行综述,并展望miRNA在临床应用中的前景。

关键词: 口腔鳞状细胞癌, 微小RNA, 靶基因, 信号通路

Abstract:

MicroRNAs (miRNAs) are a series of noncoding single-stranded RNA molecules encoded by endogenous genes that affect post-transcriptional gene regulation. Aberrant expression of miRNA involved in oral squamous cell carcinomas is related to tumour growth, cellular apoptosis, invasion, metastasis, radiosensitivity and chemosensitivity. Such aberrant expression regulates target genes or signalling pathways and can potentially be applied to clinic as a kind of biomarker in early diagnosis and prognosis. Accordingly, this review generalizes the association between ectopic miRNA and oral squamous cell carcinoma. Simultaneously, it summarizes the axis, namely, miRNA-target gene/downstream-signaling pathway-tumorous effect, and forecasts the prospect of clinical application.

Key words: oral squamous cell carcinoma, microRNA, target gene, signaling pathway

中图分类号: 

  • R739.8

图 1

microRNA生成机制"

[1] Kozomara A, Griffiths-Jones S . Mirbase: annotating high confidence microRNAs using deep sequencing data[J]. Nucleic Acids Res, 2014,42(Database issue):D68-D73.
doi: 10.1093/nar/gkt1181 pmid: 24275495
[2] Alvarez-Garcia I, Miska EA . MicroRNA functions in animal development and human disease[J]. De-velopment, 2005,132(21):4653-4662.
[3] Fabian MR, Sonenberg N, Filipowicz W . Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010,79:351-379.
doi: 10.1146/annurev-biochem-060308-103103
[4] Liu XQ, Yu JS, Jiang L , et al. MicroRNA-222 regu-lates cell invasion by targeting matrix metallopro-teinase 1 (MMP1) and manganese superoxide dis-mutase 2 (SOD2) in tongue squamous cell carcinoma cell lines[J]. Cancer Genomics Proteomics, 2009,6(3):131-139.
[5] Wójcicka A, Kolanowska M, Jażdżewski K . Me-chanisms in endocrinology: microRNA in diagnostics and therapy of thyroid cancer[J]. Eur J Endocrinol, 2016,174(3):R89-R98.
doi: 10.1530/EJE-15-0647 pmid: 26503845
[6] Takasaki S . Roles of microRNAs in cancers and development[J]. Methods Mol Biol, 2015,1218:375-413.
doi: 10.1007/978-1-4939-1538-5
[7] Vasudevan S, Tong YC, Steitz JA . Switching from repression to activation: microRNAs can up-regulate translation[J]. Science, 2007,318(5858):1931-1934.
doi: 10.1126/science.1149460
[8] Fukumoto I, Hanazawa T, Kinoshita T , et al. Micro-RNA expression signature of oral squamous cell carcinoma: functional role of microRNA-26a/b in the modulation of novel cancer pathways[J]. Br J Cancer, 2015,112(5):891-900.
doi: 10.1038/bjc.2015.19 pmid: 4453953
[9] Manikandan M , Deva Magendhra Rao AK, Arun-kumar G, et al. Oral squamous cell carcinoma: micro-RNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism[J]. Mol Cancer, 2016,15:28.
doi: 10.1186/s12943-016-0512-8 pmid: 27056547
[10] Czech B, Hannon GJ . Small RNA sorting: matchma-king for argonautes[J]. Nat Rev Genet, 2011,12(1):19-31.
doi: 10.1038/nrg2916 pmid: 21116305
[11] Ha MJ, Kim VN . Regulation of microRNA bioge-nesis[J]. Nat Rev Mol Cell Biol, 2014,15(8):509-524.
doi: 10.1038/nrm3838 pmid: 25027649
[12] Lee Y, Ahn C, Han JJ , et al. The nuclear RNaseⅢdrosha initiates microRNA processing[J]. Nature, 2003,425(6956):415-419.
doi: 10.1038/nature01957
[13] Yeom KH, Lee Y, Han JJ , et al. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing[J]. Nucleic Acids Res, 2006,34(16):4622-4629.
doi: 10.1093/nar/gkl458 pmid: 1636349
[14] Chendrimada TP, Gregory RI, Kumaraswamy E , et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing[J]. Nature, 2005,436(7051):740-744.
doi: 10.1038/nature03868
[15] Jia LF, Wei SB, Gong K , et al. Prognostic implica-tions of micoRNA miR-195 expression in human tongue squamous cell carcinoma[J]. PLoS One, 2013,8(2):e56634.
doi: 10.1371/journal.pone.0056634 pmid: 3579853
[16] Jia LF, Wei SB, Gan YH , et al. Expression, re-gulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma[J]. Int J Cancer, 2014,135(10):2282-2293.
doi: 10.1002/ijc.28667 pmid: 24343426
[17] Li Y, Cai BL, Shen LL , et al. MiRNA-29b suppre-sses tumor growth through simultaneously inhibiting angiogenesis and tumorigenesis by targeting Akt3[J]. Cancer Lett, 2017,397:111-119.
doi: 10.1016/j.canlet.2017.03.032 pmid: 28365400
[18] Xu R, Zeng G, Gao J , et al. miR-138 suppresses the proliferation of oral squamous cell carcinoma cells by targeting Yes-associated protein 1[J]. Oncol Rep, 2015,34(4):2171-2178.
doi: 10.3892/or.2015.4144 pmid: 26239136
[19] Endo H, Muramatsu T, Furuta M , et al. Potential of tumor-suppressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer[J]. Carcinogenesis, 2013,34(3):560-569.
doi: 10.1093/carcin/bgs376 pmid: 23233740
[20] Rastogi B, Kumar A, Raut SK , et al. Downregulation of mir-377 promotes oral squamous cell carcinoma growth and migration by targeting HDAC9[J]. Cancer Invest, 2017,35(3):152-162.
doi: 10.1080/07357907.2017.1286669 pmid: 28267394
[21] Chi HY . miR-194 regulated AGK and inhibited cell proliferation of oral squamous cell carcinoma by reducing PI3K-Akt-FoxO3a signaling[J]. Biomed Pharmacother, 2015,71:53-57.
doi: 10.1016/j.biopha.2015.02.011 pmid: 25960215
[22] Xu P, Li Y, Zhang HY , et al. MicroRNA-340 me-diates metabolic shift in oral squamous cell car-cinoma by targeting glucose transporter-1[J]. J Oral Maxillofac Surg, 2016,74(4):844-850.
doi: 10.1016/j.joms.2015.09.038 pmid: 26541225
[23] Wang JH, Wang W, Li JC , et al. miR182 activates the Ras-MEK-ERK pathway in human oral cavity squamous cell carcinoma by suppressing RASA1 and SPRED1[J]. Onco Targets Ther, 2017,10:667-679.
doi: 10.2147/OTT
[24] Cheng CM, Shiah SG, Huang C , et al. Up-regulation of miR-455-5p by the TGF-β-SMAD signalling axis promotes the proliferation of oral squamous cancer cells by targeting UBE2B[J]. J Pathol, 2016,240(1):38-49.
doi: 10.1002/path.4752 pmid: 27235675
[25] Liu ZM, Diep C, Mao TT , et al. MicroRNA-92b promotes tumor growth and activation of NF-κB signaling via regulation of NLK in oral squamous cell carcinoma[J]. Oncol Rep, 2015,34(6):2961-2968.
doi: 10.3892/or.2015.4323 pmid: 26503628
[26] Tian XG, Zeng G, Li X , et al. Cantharidin inhibits cell proliferation and promotes apoptosis in tongue squamous cell carcinoma through suppression of miR-214 and regulation of p53 and Bcl-2/Bax[J]. Oncol Rep, 2015,33(6):3061-3068.
doi: 10.3892/or.2015.3942 pmid: 25962755
[27] Thiery JP, Acloque H, Huang RY , et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009,139(5):871-890.
doi: 10.1016/j.cell.2009.11.007 pmid: 19945376
[28] Thiery JP, Sleeman JP . Complex networks orches-trate epithelial-mesenchymal transitions[J]. Nat Rev Mol Cell Biol, 2006,7(2):131-142.
doi: 10.1038/nrm1835 pmid: 16493418
[29] Lin ZY, Sun LJ, Chen WL , et al. miR-639 regulates transforming growth factor beta-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting FOXC1[J]. Cancer Sci, 2014,105(10):1288-1298.
doi: 10.1111/cas.12499 pmid: 4462345
[30] Chang CC, Yang Y, Li YJ , et al. MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma[J]. Oral Oncol, 2013,49(9):923-931.
doi: 10.1016/j.oraloncology.2013.03.430 pmid: 23602254
[31] Kuo YZ, Tai YH, Lo HI , et al. MiR-99a exerts anti-metastasis through inhibiting myotubularin-related protein 3 expression in oral cancer[J]. Oral Dis, 2014,20(3):e65-e75.
doi: 10.1111/odi.12133 pmid: 23731011
[32] He QT, Zhou XF, Li S , et al. MicroRNA-181a sup-presses salivary adenoid cystic carcinoma metastasis by targeting MAPK-Snai2 pathway[J]. Biochim Biophys Acta, 2013,1830(11):5258-5266.
doi: 10.1016/j.bbagen.2013.07.028 pmid: 23911747
[33] Qiu KF, Huang ZX, Huang ZQ , et al. miR-22 regu-lates cell invasion, migration and proliferation in vitro through inhibiting CD147 expression in tongue squamous cell carcinoma[J]. Arch Oral Biol, 2016,66:92-97.
doi: 10.1016/j.archoralbio.2016.02.013 pmid: 26943814
[34] Peng C, Liao YW, Lu MY , et al. Downregulation of miR-1 enhances tumorigenicity and invasiveness in oral squamous cell carcinomas[J]. J Formos Med Assoc, 2017,116(10):782-789.
doi: 10.1016/j.jfma.2016.12.003 pmid: 28089494
[35] Zeng Q, Tao XA, Huang F , et al. Overexpression of miR-155 promotes the proliferation and invasion of oral squamous carcinoma cells by regulating BCL6/cyclin D2[J]. Int J Mol Med, 2016,37(5):1274-1280.
doi: 10.3892/ijmm.2016.2529
[36] Hu J, Xu JF, Ge WL . MiR-497 enhances metastasis of oral squamous cell carcinoma through SMAD7 suppression[J]. Am J Transl Res, 2016,8(7):3023-3031.
pmid: 27508022
[37] Tu H, Chang KW, Cheng HW , et al. Upregulation of miR-372 and -373 associates with lymph node me-tastasis and poor prognosis of oral carcinomas[J]. Laryngoscope, 2015,125(11):E365-E370.
doi: 10.1002/lary.25464 pmid: 26152520
[38] Yang CN, Deng YT, Tang JY , et al. MicroRNA-29b regulates migration in oral squamous cell carcinoma and its clinical significance[J]. Oral Oncol, 2015,51(2):170-177.
doi: 10.1016/j.oraloncology.2014.10.017
[39] Ishigami T, Uzawa K, Higo M , et al. Genes and molecular pathways related to radioresistance of oral squamous cell carcinoma cells[J]. Int J Cancer, 2007,120(10):2262-2270.
doi: 10.1002/ijc.22561 pmid: 17290400
[40] Weng J, Yu C, Lee YC , et al. miR-494-3p induces cellular senescence and enhances radiosensitivity in human oral squamous carcinoma cells[J]. Int J Mol Sci, 2016,17(7). doi: 10.3390/ijms17071092.
doi: 10.3390/ijms17071092 pmid: 27399693
[41] Chang YC, Jan CI, Peng C , et al. Activation of micro-RNA-494-targeting Bmi1 and ADAM10 by silibinin ablates cancer stemness and predicts favourable pro-gnostic value in head and neck squamous cell car-cinomas[J]. Oncotarget, 2015,6(27):24002-24016.
[42] Chen D, Yan WX, Liu ZG , et al. Downregulation of miR-221 enhances the sensitivity of human oral squamous cell carcinoma cells to Adriamycin through upregulation of TIMP3 expression[J]. Biomed Phar-macother, 2016,77:72-78.
doi: 10.1016/j.biopha.2015.12.002 pmid: 26796268
[43] Jiang FF, Zhao W, Zhou LJ , et al. MiR-222 targeted PUMA to improve sensitization of UM1 cells to cisplatin[J]. Int J Mol Sci, 2014,15(12):22128-22141.
doi: 10.3390/ijms151222128 pmid: 4284698
[44] Fan S, Chen WX, Lv XB , et al. miR-483-5p deter-mines mitochondrial fission and cisplatin sensitivity in tongue squamous cell carcinoma by targeting FIS1[J]. Cancer Lett, 2015,362(2):183-191.
doi: 10.1016/j.canlet.2015.03.045 pmid: 25843291
[45] Zheng XQ, Li JS, Peng C , et al. MicroRNA-24 in-duces cisplatin resistance by targeting PTEN in hu-man tongue squamous cell carcinoma[J]. Oral Oncol, 2015,51(11):998-1003.
doi: 10.1016/j.oraloncology.2015.08.002 pmid: 26365986
[1] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[2] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[3] 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717.
[4] 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520.
[5] 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320.
[6] 李潭,梁新华. 盘状蛋白结构域受体1在调控恶性肿瘤进展和治疗中的作用[J]. 国际口腔医学杂志, 2023, 50(2): 230-236.
[7] 赵卓平,辛鹏飞,高阳,张彩凤,张宽收,刘青梅. 光热治疗在口腔鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 462-470.
[8] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[9] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
[10] 江涵,神应强,陈谦明. 毒蕈碱受体通过Yes相关蛋白信号对口腔鳞状细胞癌生物学行为的实验研究[J]. 国际口腔医学杂志, 2022, 49(2): 138-143.
[11] 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36.
[12] 蒋宇磊,夏斌,饶南荃,杨禾丰,许彪. 外泌体在口腔鳞状细胞癌恶性进展及诊疗应用的研究[J]. 国际口腔医学杂志, 2021, 48(6): 711-717.
[13] 钱颖,龚佳幸,俞梦飞,刘宇,魏栋,朱子羽,陆科杰,王慧明. 从分子生物学角度对成釉细胞瘤诊断及治疗的考量[J]. 国际口腔医学杂志, 2021, 48(5): 570-578.
[14] 甘建国,高攀,王晓毅. 循环肿瘤细胞与口腔鳞状细胞癌相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 205-212.
[15] 黄俊文,乔洁,梅子,陈茁,李杨,乔彬. 脂多糖结合蛋白在口腔鳞状细胞癌中的表达及其临床意义[J]. 国际口腔医学杂志, 2021, 48(1): 50-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .