国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (5): 571-578.doi: 10.7518/gjkq.2018.05.013

• 综述 • 上一篇    下一篇

植物雌激素防治牙周炎的研究进展

姜懿轩1,莫龙义2,贾小玥3,徐欣3,刘程程4()   

  1. 1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院种植科 成都 610041
    2. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医学院 成都 610041
    3. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院牙体牙髓病科 成都 610041
    4. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院牙周科 成都 610041
  • 收稿日期:2017-11-04 修回日期:2018-04-11 出版日期:2018-09-01 发布日期:2018-09-20
  • 通讯作者: 刘程程
  • 作者简介:姜懿轩,硕士,Email:531935636@qq.com
  • 基金资助:
    国家自然科学基金(81600871);国家自然科学基金(81771099);四川省科学技术厅项目(2016JY0006);四川省科学技术厅项目(2017029)

Prevention and treatment for periodontitis by phytoestrogens

Yixuan Jiang1,Longyi Mo2,Xiaoyue Jia3,Xin Xu3,Chengcheng Liu4()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
    3. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    4. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-11-04 Revised:2018-04-11 Online:2018-09-01 Published:2018-09-20
  • Contact: Chengcheng Liu
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81600871);This study was supported by National Natural Science Foundation of China(81771099);Scientific Research Foundation of the Science and Technology Department of Sichuan Province(2016JY0006);Scientific Research Foundation of the Science and Technology Department of Sichuan Province(2017029)

摘要:

雌激素代谢紊乱是牙周炎的全身促进因素。应用雌激素替代治疗可增加牙槽骨骨量,延缓牙周病进程,然而其安全性难以评估。植物雌激素是一种天然的雌激素类似物,包括大豆异黄酮、香豆素、木脂素等,可与人体内雌激素受体结合发挥相应的雌激素效应。近年来,越来越多的研究证据表明,外源性补充植物雌激素有可能缓解牙周炎症和组织破坏,为牙周炎治疗提供新的思路。本文就植物雌激素在牙周炎症及牙周组织破坏方面的研究进展进行综述。

关键词: 植物雌激素, 牙周炎, 雌激素受体, 牙槽骨, 雌激素替代治疗

Abstract:

Estrogen metabolism disorder is the systemic promoting factor of periodontitis. Application of estrogen replacement treatment can increase the alveolar bone mass and delay the progression of periodontal disease. However, its biosafety is difficult to assess. Phytoestrogens are natural plant compounds that are similar to estrogen, including soy isoflavones, coumarins and lignans, etc. They have estrogen-like activity by binding with estrogen receptor. Recently, increasing evidence have been found indicating exogenous phytoestrogens could relieve periodontal inflammation and tissue destruction. They offer a promising therapy for periodontitis. Thus, we colligate correlated documents and write the review.

Key words: phytoestrogen, periodontitis, estrogen receptor, alveolar bone, estrogen replacement treatment

中图分类号: 

  • R781.4 +2
[1] Shapiro LF, Freeman K , The relationship between estrogen, estrogen receptors and periodontal disease in adult women: a review of the literature[J]. N Y State Dent J, 2014,80(3):30-34.
[2] Macari S, Duffles LF, Queiroz-Junior CM , et al. Oestrogen regulates bone resorption and cytokine production in the maxillae of female mice[J]. Arch Oral Biol, 2015,60(2):333-341.
doi: 10.1016/j.archoralbio.2014.11.010 pmid: 25438102
[3] Xiong Q, Tang P, Gao Y , et al. Proteomic analysis of estrogen-mediated signal transduction in osteo-clasts formation[J]. Biomed Res Int, 2015,2015:596789.
doi: 10.1155/2015/596789 pmid: 26120583
[4] Nebel D, Jönsson D, Norderyd O , et al. Differential regulation of chemokine expression by estrogen in human periodontal ligament cells[J]. J Periodont Res, 2010,45(6):796-802.
doi: 10.1111/j.1600-0765.2010.01308.x pmid: 20701669
[5] Amadei SU, Souza DM, Brandão AA , et al. Influence of different durations of estrogen deficiency on alveolar bone loss in rats[J]. Braz Oral Res, 2011,25(6):538-543.
doi: 10.1590/S1806-83242011000600011 pmid: 22147235
[6] Haas AN, Rösing CK, Oppermann RV , et al. Asso-ciation among menopause, hormone replacement therapy, and periodontal attachment loss in southern Brazilian women[J]. J Periodontol, 2009,80(9):1380-1387.
doi: 10.1902/jop.2009.090082
[7] Rossouw JE, Anderson GL, Prentice RL , et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial[J]. JAMA, 2002,288(3):321-333.
doi: 10.1001/jama.288.3.321
[8] 袁婷婷, 张乃丹, 何勇静 , 等. 天然药物中植物雌激素样化学成分的研究进展[J]. 中国中药杂志, 2014,39(23):4526-4531.
doi: 10.4268/cjcmm20142310
Yuan TT, Zhang ND, He YJ , et al. Research progress of phytoestrogens-like chemical constituents in na-tural medicines[J]. Chin J Chin Mater Med, 2014,39(23):4526-4531.
doi: 10.4268/cjcmm20142310
[9] Sirotkin AV, Harrath AH , Phytoestrogens and their effects[J]. Eur J Pharmacol, 2014,741:230-236.
doi: 10.1016/j.ejphar.2014.07.057
[10] Chiang SS, Pan TM , Beneficial effects of phytoes-trogens and their metabolites produced by intestinal microflora on bone health[J]. Appl Microbiol Bio-technol, 2013,97(4):1489-1500.
doi: 10.1007/s00253-012-4675-y
[11] Shambayati M, Patel M, Ma Y , et al. Central in-flammatory response to experimental stroke is inhi-bited by a neuroprotective dose of dietary soy[J]. Brain Res, 2014,1593:76-82.
doi: 10.1016/j.brainres.2014.09.042
[12] Kruger M, Wolber F , Osteoporosis: modern para-digms for last century’s bones[J]. Nutrients, 2016,8(6):376.
doi: 10.3390/nu8060376 pmid: 4924217
[13] Xu XC, Chen H, Zhang X , et al. Effects of oestro-gen deficiency on the alveolar bone of rats with experimental periodontitis[J]. Mol Med Rep, 2015,12(3):3494-3502.
doi: 10.3892/mmr.2015.3875 pmid: 4526094
[14] E LL , Xu WH, Feng L, et al. Estrogen enhances the bone regeneration potential of periodontal ligament stem cells derived from osteoporotic rats and seeded on nano-hydroxyapatite/collagen/poly(L-lactide)[J]. Int J Mol Med, 2016,37(6):1475-1486.
doi: 10.3892/ijmm.2016.2559
[15] García Palacios V, Robinson LJ, Borysenko CW , et al. Negative regulation of RANKL-induced osteo-clastic differentiation in RAW264.7 cells by estro-gen and phytoestrogens[J]. J Biol Chem, 2005,280(14):13720-13727.
doi: 10.1074/jbc.M410995200
[16] Setchell KD, Lydeking-Olsen E , Dietary phytoestro-gens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary inte-rvention studies[J]. Am J Clin Nutr, 2003,78(3 Su-ppl):593S-609S.
doi: 10.1093/ajcn/78.3.593S
[17] Liao MH, Tai YT, Cherng YG , et al. Genistein indu-ces oestrogen receptor-α gene expression in osteo-blasts through the activation of mitogen-activated protein kinases/NF-κB/activator protein-1 and pro-motes cell mineralisation[J]. Bri J Nutr, 2013,111(1):55-63.
[18] Trzeciakiewicz A, Habauzit V, Mercier S , et al. Hes-peretin stimulates differentiation of primary rat os-teoblasts involving the BMP signalling pathway[J]. J Nutr Biochem, 2010,21(5):424-431.
doi: 10.1016/j.jnutbio.2009.01.017
[19] Mathews S, Bhonde R, Gupta PK , et al. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human me-senchymal stem cells[J]. Differentiation, 2012,84(2):185-192.
doi: 10.1016/j.diff.2012.05.001
[20] Hu B, Yu B, Tang D , et al. Daidzein promotes osteo-blast proliferation and differentiation in OCT1 cells through stimulating the activation of BMP-2/Smads pathway[J]. Genet Mol Res, 2016; 15(2):15028792.
[21] Strong AL, Ohlstein JF, Jiang Q , et al. Novel dai-dzein analogs enhance osteogenic activity of bone marrow-derived mesenchymal stem cells and adi-pose-derived stromal/stem cells through estrogen receptor dependent and independent mechanisms[J]. Stem Cell Res Ther, 2014,5(4):105.
doi: 10.1186/scrt493
[22] Setchell KD, Brown NM, Lydeking-Olsen E , The clinical importance of the metabolite equol—a clue to the effectiveness of soy and its isoflavones[J]. J Nutr, 2002,132(12):3577-3584.
doi: 10.1093/jn/132.12.3577
[23] Wang J, Xu J, Wang B , et al. Equol promotes rat osteoblast proliferation and differentiation through activating estrogen receptor[J]. Genet Mol Res, 2014,13(3):5055-5063.
doi: 10.4238/2014.July.4.21
[24] Ming LG, Zhou J, Cheng GZ , et al. Osthol, a coumarin isolated from common cnidium fruit, enhances the differentiation and maturation of osteoblasts in vitro[J]. Pharmacology, 2011,88(1/2):33-43.
doi: 10.1159/000328776
[25] Tang DZ, Yang F, Yang Z , et al. Psoralen stimulates osteoblast differentiation through activation of BMP signaling[J]. Biochem Biophys Res Commun, 2011,405(2):256-261.
doi: 10.1016/j.bbrc.2011.01.021
[26] Zhang R, Pan YL, Hu SJ , et al. Effects of total li-gnans from Eucommia ulmoides barks prevent bone loss in vivo and in vitro[J]. J Ethnopharmacol, 2014,155(1):104-112.
doi: 10.1016/j.jep.2014.04.031 pmid: 24786573
[27] Forte L, Torricelli P, Boanini E , et al. Antioxidant and bone repair properties of quercetin-functiona-lized hydroxyapatite: an in vitro osteoblast-osteo-clast-endothelial cell co-culture study[J]. Acta Bio-mater, 2016,32:298-308.
doi: 10.1016/j.actbio.2015.12.013
[28] Guo AJ, Choi RC, Cheung AW , et al. Baicalin, a flavone, induces the differentiation of cultured osteo-blasts: an action via the Wnt/β-catenin signaling pa- thway[J]. J Biol Chem, 2011,286(32):27882-27893.
doi: 10.1074/jbc.M111.236281
[29] Yuan SY, Sheng T, Liu LQ , et al. Puerarin prevents bone loss in ovariectomized mice and inhibits os-teoclast formation in vitro[J]. Chin J Nat Med, 2016,14(4):265-269.
doi: 10.1016/S1875-5364(16)30026-7 pmid: 27114313
[30] Lv H, Che T, Tang X , et al. Puerarin enhances proli-feration and osteoblastic differentiation of human bone marrow stromal cells via a nitric oxide/cyclic guanosine monophosphate signaling pathway[J]. Mol Med Rep, 2015,12(2):2283-2290.
doi: 10.3892/mmr.2015.3647
[31] Wang Y, Wang WL, Xie WL , et al. Puerarin stimu-lates proliferation and differentiation and protects against cell death in human osteoblastic MG-63 cells via ER-dependent MEK/ERK and PI3K/Akt activa-tion[J]. Phytomedicine, 2013,20(10):787-796.
doi: 10.1016/j.phymed.2013.03.005
[32] Park K, Ju WC, Yeo JH , et al. Increased OPG/RANKL ratio in the conditioned medium of soybean-treated osteoblasts suppresses RANKL-induced osteoclast differentiation[J]. Int J Mol Med, 2014,33(1):178-184.
doi: 10.3892/ijmm.2013.1557
[33] Karieb S, Fox SW , Phytoestrogens directly inhibit TNF-α-induced bone resorption in RAW264.7 cells by suppressing c-fos-induced NFATc1 expression[J]. J Cell Biochem, 2011,112(2):476-487.
doi: 10.1002/jcb.22935
[34] Ohtomo T, Uehara M, Peñalvo JL , et al. Comparative activities of daidzein metabolites, equol and O-des-methylangolensin, on bone mineral density and lipid metabolism in ovariectomized mice and in osteoclast cell cultures[J]. Eur J Nutr, 2008,47(5):273-279.
doi: 10.1007/s00394-008-0723-x
[35] Winzer M, Rauner M, Pietschmann P , Glycitein de-creases the generation of murine osteoclasts and in- creases apoptosis[J]. Wien Med Wochenschr, 2010,160(17/18):446-451.
doi: 10.1007/s10354-010-0811-4 pmid: 20714813
[36] Huh JE, Lee WI, Kang JW , et al. Formononetin atte- nuates osteoclastogenesis via suppressing the RANKL-induced activation of NF-κB, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 signaling pathway[J]. J Nat Prod, 2014,77(11):2423-2431.
doi: 10.1021/np500417d
[37] Zhang Y, Yan M, Yu QF , et al. Puerarin prevents LPS-induced osteoclast formation and bone loss via inhibition of Akt activation[J]. Biol Pharm Bull, 2016,39(12):2028-2035.
doi: 10.1248/bpb.b16-00522
[38] He Y, Zhang Q, Shen Y , et al. Schisantherin A suppresses osteoclast formation and wear particle-in-duced osteolysis via modulating RANKL signaling pathways[J]. Biochem Biophys Res Commun, 2014,449(3):344-350.
doi: 10.1016/j.bbrc.2014.05.034
[39] Yamashita T, Uehara S, Udagawa N , et al. Arcti-genin inhibits osteoclast differentiation and function by suppressing both calcineurin-dependent and os-teoblastic cell-dependent NFATc1 pathways[J]. PLoS One, 2014,9(1):e85878.
doi: 10.1371/journal.pone.0085878
[40] Park B , Triptolide, a diterpene, inhibits osteoclasto-genesis, induced by RANKL signaling and human cancer cells[J]. Biochimie, 2014,105:129-136.
doi: 10.1016/j.biochi.2014.07.003
[41] He X, Andersson G, Lindgren U , et al. Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production[J]. Biochem Biophys Res Commun, 2010,401(3):356-362.
doi: 10.1016/j.bbrc.2010.09.053
[42] Kwak HB, Lee BK, Oh J , et al. Inhibition of oste-oclast differentiation and bone resorption by rote-none, through down-regulation of RANKL-induced c-Fos and NFATc1 expression[J]. Bone, 2010,46(3):724-731.
doi: 10.1016/j.bone.2009.10.042
[43] Islam S, Hassan F, Tumurkhuu G , et al. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells[J]. Biochem Biophys Res Commun, 2007,360(2):346-351.
doi: 10.1016/j.bbrc.2007.06.023 pmid: 17597583
[44] Choi EY, Bae SH, Ha MH , et al. Genistein suppre-sses Prevotella intermedia lipopolysaccharide-in-duced inflammatory response in macrophages and attenuates alveolar bone loss in ligature-induced periodontitis[J]. Arch Oral Biol, 2016,62:70-79.
doi: 10.1016/j.archoralbio.2015.11.019
[45] Choi EY, Jin JY, Lee JY , et al. Anti-inflammatory effects and the underlying mechanisms of action of daidzein in murine macrophages stimulated with Prevotella intermedia lipopolysaccharide[J]. J Perio-dont Res, 2012,47(2):204-211.
doi: 10.1111/jre.2012.47.issue-2
[46] Nishide Y, Tadaishi M, Kobori M , et al. Possible role of S-equol on bone loss via amelioration of in-flammatory indices in ovariectomized mice[J]. J Clin Biochem Nutr, 2013,53(1):41-48.
doi: 10.3164/jcbn.12-123
[47] Yang X, Zhang H, Wang J , et al. Puerarin decreases bone loss and collagen destruction in rats with liga-ture-induced periodontitis[J]. J Periodont Res, 2015,50(6):748-757.
doi: 10.1111/jre.2015.50.issue-6
[48] Park SY, Park DJ, Kim YH , et al. Upregulation of heme oxygenase-1 via PI3K/Akt and Nrf-2 signaling pathways mediates the anti-inflammatory activity of schisandrin in Porphyromonas gingivalis LPS-stimulated macrophages[J]. Immunol Lett, 2011,139(1/2):93-101.
doi: 10.1016/j.imlet.2011.05.007
[49] Hosokawa Y, Hosokawa I, Shindo S , et al. Gomisin N decreases inflammatory cytokine production in human periodontal ligament cells[J]. Inflammation, 2017,40(2):360-365.
doi: 10.1007/s10753-016-0482-4 pmid: 27896541
[50] Huh JE, Jung IT, Choi J , et al. The natural flavonoid galangin inhibits osteoclastic bone destruction and osteoclastogenesis by suppressing NF-κB in collagen-induced arthritis and bone marrow-derived macro-phages[J]. Eur J Pharmacol, 2013,698(1/2/3):57-66.
doi: 10.1016/j.ejphar.2012.08.013
[51] Hsieh TP, Sheu SY, Sun JS , et al. Icariin inhibits osteoclast differentiation and bone resorption by sup-pression of MAPKs/NF-κB regulated HIF-1α and PGE2 synjournal[J]. Phytomedicine, 2011,18(2/3):176-185.
doi: 10.1016/j.phymed.2010.04.003
[52] Soell M, Elkaim R, Tenenbaum H , Cathepsin C, matrix metalloproteinases, and their tissue inhibitors in gingiva and gingival crevicular fluid from perio-dontitis-affected patients[J]. J Dent Res, 2002,81(3):174-178.
doi: 10.1177/0810174
[53] Bătăiosu M, Taisescu CI, Pisoschi CG , et al. Effects of therapy with two combinations of antibiotics on the imbalance of MMP-2/TIMP-2 in chronic perio-dontitis[J]. Rom J Morphol Embryo, 2015,56(1):77-83.
[54] Zhang Y, Dong J, He P , et al. Genistein inhibit cyto-kines or growth factor-induced proliferation and transformation phenotype in fibroblast-like syno-viocytes of rheumatoid arthritis[J]. Inflammation, 2012,35(1):377-387.
doi: 10.1007/s10753-011-9365-x
[55] Kim MH, Gutierrez AM, Goldfarb RH , Different mechanisms of soy isoflavones in cell cycle regu-lation and inhibition of invasion[J]. Anticancer Res, 2002,22(6C):3811-3817.
[56] Xiao Y, Bunn CL, Bartold PM , Immunohistoche-mical demonstration of the plasminogen activator system in human gingival tissues and gingival fibro-blasts[J]. J Periodont Res, 1998,33(1):17-26.
[57] Smith PC, Santibañez JF, Morales JP , et al. Epide-rmal growth factor stimulates urokinase-type plas-minogen activator expression in human gingival fibroblasts. Possible modulation by genistein and curcumin[J]. J Periodont Res, 2004,39(6):380-387.
doi: 10.1111/j.1600-0765.2004.00753.x
[58] Liu Z, Liu L, Kang C , et al. Effects of estrogen de-ficiency on microstructural changes in rat alveolar bone proper and periodontal ligament[J]. Mol Med Rep, 2015,12(3):3508-3514.
doi: 10.3892/mmr.2015.3891
[59] Atmaca A, Kleerekoper M, Bayraktar M , et al. Soy isoflavones in the management of postmenopausal osteoporosis[J]. Menopause, 2008,15(4 Pt 1):748-757.
doi: 10.2460/ajvr.67.1.120 pmid: 18277912
[60] Chen MN, Lin CC, Liu CF , Efficacy of phytoestro-gens for menopausal symptoms: a meta-analysis and systematic review[J]. Climacteric, 2015,18(2):260-269.
doi: 10.3109/13697137.2014.966241 pmid: 4389700
[61] Baber R , Phytoestrogens and post reproductive health[J]. Maturitas, 2010,66(4):344-349.
doi: 10.1016/j.maturitas.2010.03.023 pmid: 20409653
[62] Tempfer CB, Bentz EK, Leodolter S , et al. Phyto-estrogens in clinical practice: a review of the lite-rature[J]. Fertil Steril, 2007,87(6):1243-1249.
doi: 10.1016/j.fertnstert.2007.01.120 pmid: 17490659
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[3] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[4] 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580.
[5] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[6] 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262.
[7] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[8] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[9] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[10] 尹一佳,杨瑾廷,申建琪,黄凌依,井岩,官秋玥,韩向龙. 钙黏蛋白5驱动内皮细胞特异性过表达Dickkopf 1影响骨形成[J]. 国际口腔医学杂志, 2022, 49(6): 641-647.
[11] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[12] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[13] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[14] 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440.
[15] 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .