国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (1): 46-49.doi: 10.7518/gjkq.2018.01.009

• 综述 • 上一篇    下一篇

微小RNA在人牙周膜来源细胞成骨分化中的作用

郝奕霖, 房付春, 吴补领   

  1. 南方医科大学南方医院口腔科 广州 510515
  • 收稿日期:2017-05-11 修回日期:2017-10-20 出版日期:2018-01-01 发布日期:2018-01-01
  • 通讯作者: 吴补领,教授,博士,Email:bulingwu@smu.edu.cn
  • 作者简介:郝奕霖,硕士,Email:770716058@qq.com
  • 基金资助:
    国家自然科学基金(81600882); 广东省医学科学技术研究基金(A2016190)

Functions of microRNA on the osteogenic differentiation of human periodontal ligament-derived cells

Hao Yilin, Fang Fuchun, Wu Buling   

  1. Dept. of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
  • Received:2017-05-11 Revised:2017-10-20 Online:2018-01-01 Published:2018-01-01
  • Supported by:
    This work was supported by National Natural Science Foundation of China (81600882) and Medical Science and Technology Research Fundation of Guangdong Province (A2016190).

摘要: 人牙周膜来源细胞是一个异质性细胞群,能够分化成成骨细胞,参与牙槽骨改建、修复和牙周再生。微小RNA(miRNA)被认为在细胞调控分化进程中发挥了关键作用,也是维持细胞分化特性和调节分化的关键因子,miRNA靶向结合目的基因,通过上调或下调的调控方式产生促进或抑制成骨的作用。本文总结目前miRNA在人牙周膜来源细胞成骨分化过程中的相关研究,就miRNA在矿化或机械力诱导作用条件下可能发挥的功能、调控的靶基因及通路进行综述。

关键词: 微小RNA, 牙周膜干细胞, 牙周膜细胞, 成骨分化

Abstract: Human periodontal ligament-derived cells are a group of heterogeneous cells, which can differentiate into osteoblasts, participate in remodeling and repair of alveolar bone remodeling, and periodontal regeneration. MicroRNAs (miRNAs) are thought to play a key role in the regulation of cell differentiation and be key factors in maintaining cell differentiation and regulating differentiation. MicroRNA plays a promotion or inhibition role on osteogenic differentiation by targeting mRNA. In this review, we summarized the different miRNAs in the osteogenic differentiation of periodontal-derived cells, focusing on the function and regulation of target genes and pathways under the mineralized or mechanical force induced conditions.

Key words: microRNA, periodontal ligament stem cell, periodontal ligament cell, osteogenic differentiation

中图分类号: 

  • Q254
[1]Pihlstrom BL, Michalowicz BS, Johnson NW. Perio-dontal diseases[J]. Lancet, 2005, 366(9499):1809- 1820.
[2]Sanz AR, Carrión FS, Chaparro AP. Mesenchymal stem cells from the oral cavity and their potential value in tissue engineering[J]. Periodontol 2000, 2015, 67(1):251-267.
[3]Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament[J]. Lancet, 2004, 364(9429): 149-155.
[4]Kebschull M, Papapanou PN. Mini but mighty: microRNAs in the pathobiology of periodontal disease[J]. Periodontol 2000, 2015, 69(1):201-220.
[5]Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions[J]. Brief Bioinform, 2014, 15(1):1-19.
[6]Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies[J]. Trends Cell Biol, 2015, 25(3):137-147.
[7]Bak RO, Mikkelsen JG. miRNA sponges: soaking up miRNAs for regulation of gene expression[J]. Wiley Interdiscip Rev RNA, 2014, 5(3):317-333.
[8]Farh KK, Grimson A, Jan C, et al. The widespread impact of mammalian MicroRNAs on mRNA re-pression and evolution[J]. Science, 2005, 310(5755): 1817-1821.
[9]Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight[J]. Nat Rev Genet, 2008, 9(2):102-114.
[10]Hung PS, Chen FC, Kuang SH, et al. miR-146a in-duces differentiation of periodontal ligament cells[J]. J Dent Res, 2010, 89(3):252-257.
[11]Nakasa T, Shibuya H, Nagata Y, et al. The inhibitory effect of microRNA-146a expression on bone des-truction in collagen-induced arthritis[J]. Arthritis Rheum, 2011, 63(6):1582-1590.
[12]Li C, Li C, Yue J, et al. miR-21 and miR-101 re-gulate PLAP-1 expression in periodontal ligament cells[J]. Mol Med Rep, 2012, 5(5):1340-1346.
[13]Qi L, Zhang Y. The microRNA 132 regulates fluid shear stress-induced differentiation in periodontal ligament cells through mTOR signaling pathway[J]. Cell Physiol Biochem, 2014, 33(2):433-445.
[14]Chen Y, Mohammed A, Oubaidin M, et al. Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells[J]. Gene, 2015, 566(1):13-17.
[15]Chang M, Lin H, Luo M, et al. Integrated miRNA and mRNA expression profiling of tension force-induced bone formation in periodontal ligament cells[J]. In Vitro Cell Dev Biol Anim, 2015, 51(8): 797-807.
[16]Liu Y, Liu W, Hu C, et al. MiR-17 modulates osteo-genic differentiation through a coherent feed-forward loop in mesenchymal stem cells isolated from perio-dontal ligaments of patients with periodontitis[J]. Stem Cclls, 2011, 29(11):1804-1816.
[17]Liu W, Liu Y, Guo T, et al. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments[J]. Cell Death Dis, 2013, 4:e539.
[18]邓超, 伍燕, 杨琨, 等. 微小RNA-17在糖基化终末产物刺激下人牙周膜干细胞骨向分化过程中的调控作用[J]. 华西口腔医学杂志, 2015, 33(1):21-24. Deng C, Wu Y, Yang K, et al. Effect of microRNA- 17 on osteogenic differentiation of advanced glyca-tion end products-stimulated human perio-dontal ligament stem cells[J]. West Chin J Stomatol, 2015, 33(1):21-24.
[19]Gay I, Cavender A, Peto D, et al. Differentiation of human dental stem cells reveals a role for micro-RNA-218[J]. J Periodontal Res, 2014, 49(1):110- 120.
[20]Wei FL, Wang JH, Ding G, et al. Mechanical force-induced specific microRNA expression in human periodontal ligament stem cells[J]. Cells Tissues Organs, 2015, 199(5/6):353-363.
[21]Wei F, Liu D, Feng C, et al. MicroRNA-21 mediates stretch-induced osteogenic differentiation in human periodontal ligament stem cells[J]. Stem Cells Dev, 2015, 24(3):312-319.
[1] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[2] 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31.
[3] 周婕妤,刘琳,吴亚菲,赵蕾. 微小RNA介导的牙周炎与动脉粥样硬化相关机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 76-83.
[4] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[5] 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436.
[6] 胡巍,王译凡,袁一方,李影,郭斌. 节律基因调控成骨和破骨活动机制的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 302-307.
[7] 刘志凯,王淳艺,李春洁. 胚胎小鼠颌下腺分支形态发生及其影响因素[J]. 国际口腔医学杂志, 2019, 46(1): 43-47.
[8] 冯顶丽,卓丽丹,芦笛,郭红延. 微小RNA调节间充质干细胞软骨分化机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 640-645.
[9] 方川,李雅冬. 微小RNA在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 646-651.
[10] 李婷婷,张玉峰,王若茜,黄智庆,谢律,薛艺凡,王宇蓝. 石墨烯及其衍生物改性复合材料促成骨机制和应用的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 673-677.
[11] 贾凌璐, 文勇, 徐欣. 体外培养环境影响牙周膜干细胞生物学特性的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 255-260.
[12] 伍彩娟, 杨岚, 郭吕华. 降钙素基因相关肽在骨组织再生中的作用及机制[J]. 国际口腔医学杂志, 2017, 44(4): 488-492.
[13] 刘润恒,刘于冬,陈卓凡. 微小RNA在骨分化过程中的作用机制[J]. 国际口腔医学杂志, 2017, 44(1): 108-113.
[14] 耿奉雪,潘亚萍. 微小RNA-203的生物学功能及其在口腔疾病中的作用[J]. 国际口腔医学杂志, 2016, 43(6): 685-689.
[15] 李龙,黄洪章. 微小RNA-205在肿瘤化学治疗耐药中的作用和机制[J]. 国际口腔医学杂志, 2016, 43(6): 734-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 李子夏,包广洁. 龋病病因相关因素的激光扫描共聚焦显微镜研究[J]. 国际口腔医学杂志, 2008, 35(S1): .