Inter J Stomatol ›› 2012, Vol. 39 ›› Issue (5): 679-682.doi: 10.3969/j.issn.1673-5749.2012.05.033

Previous Articles     Next Articles

Research progress on protein tyrosine phosphatase interacting protein 51

Xiao Yuxia1, Huang Meijing2, Shao Lenan2.   

  1. 1. Dept. of Stomatology, North Jiangsu People’s Hospital of Yangzhou in Jiangsu Province, Yangzhou 225000, China; 2. Center of Stomatology, The Affiliated Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
  • Received:2011-11-11 Revised:2012-05-03 Online:2012-09-01 Published:2012-09-01

Abstract:

The protein tyrosine phosphatase interacting protein 51(PTPIP51) was a conserved protein whose amino acid sequence of human was found sequence homology with several other mammalian species. The expression profile of PTPIP51 protein were widely found in human and there were several different calculated molecular masses of the protein in a tissue-specific manner. The protein interacted with different signaling partners playing variety functions in human tissues. Interacting with its receptor complexes, signaling cascades of different pathways were activated and promoted mediating cells proliferation, differentiation, apoptosis and motility. In this paper, we will review the biological characteristics, and gene expression, regulation, signal ligands and the physiological functions and relationship with human tumors of PTPIP51.

Key words: protein tyrosine phosphatase interacting protein, differentiation, programmed cell death, cell motility


TrendMD: 
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[3] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[4] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[5] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
[6] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[7] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[8] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[9] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[10] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[11] Zhu Mingjing,Zhang Qingbin. Comparative review of growth factors inducing 3D in vitro cartilage formation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 270-277.
[12] Wang Runting,Fang Fuchun. Progress in research of non-coding RNAs in osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(2): 138-145.
[13] Yu Xiaohong,Liu Yu,Zeng Lian,Yang Yanling,Wang Zhou,Li Wei. Effects of enamel matrix derivative on proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(1): 24-31.
[14] Zhou Tingru,Li Yongsheng. Advances of dental pulp stem cells in osteogenic microenvironment [J]. Int J Stomatol, 2019, 46(6): 675-679.
[15] Zhang Kaiying,Fang Fuchun,Wu Buling. Research progress on non-coding RNA in odontoblastic differentiation of dental tissue-derived stem cells [J]. Int J Stomatol, 2019, 46(5): 540-545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .