Int J Stomatol ›› 2024, Vol. 51 ›› Issue (5): 572-584.doi: 10.7518/gjkq.2024070

• Implantology • Previous Articles     Next Articles

Advancements in the study of antimicrobial peptides in the coating of oral titanium implants

Jiamin Li1,2(),Yuchen Li1,2,Zhangjie Ge2,3,Lingzi Liao1,2,Xin Guo1,2,Xiaolong Guo1,2,Ping Zhou1,2,4()   

  1. 1.School of Stomatology, Lanzhou University, Lanzhou 730000, China
    2.Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing in Gansu Province, Lanzhou 730000, China
    3.Dept. of Stomatology, Gansu Provincial Hospital, Lanzhou 730000, China
    4.Dept. of Oral and Maxillofacial Surgery, Hospital of Stomato-logy, Lanzhou University, Lanzhou 730000, China
  • Received:2023-12-17 Revised:2024-05-09 Online:2024-09-01 Published:2024-09-14
  • Contact: Ping Zhou E-mail:lijm2019@lzu.edu.cn;zhoup@lzu.edu.cn
  • Supported by:
    China Postdoctoral Science Foundation(2022M721443);Lanzhou University College Students’ Innovation and Entrepreneurship Action Plan(20220150019)

Abstract:

The demand for oral titanium implants is growing. Thus, strategies preventing peri-implant disease and improving the success rate of implantation through the surface modification of implants have been extensively studied. The main factor affecting the long-term therapeutic outcome of implants is bone loss due to peri-implantitis. Hence, an ideal implant should have not only good antimicrobial properties but also excellent osseointegration properties. Compared with conventional coatings, antimicrobial peptides (AMPs) have excellent antimicrobial properties. This paper introduces the pathogenesis of peri-implant diseases and the classification and mechanism of action of AMPs. In addition, existing AMP coatings on implant surfaces are examined in terms of their efficiency in enhancing AMPs, promoting osseointegration, and responding to changes in peri-implant tissues. This study is expected to provide a direction for the optimization of AMP coating research and its clinical translation.

Key words: antimicrobial peptide, titanium implant, peri-implantitis, surface modification, antibacteria, osseointegration

CLC Number: 

  • R783.1

TrendMD: 

Fig 1

AMP mechanism of action model diagram"

Fig 2

Schematic diagram of AMP surface coating"

Fig 3

Schematic diagram of the action of titanium implants loaded with AMP"

Tab 1

Overview of research advances in AMP coatings"

参考文献AMP类型氨基酸序列主要结果应用意义
[55]HHC36KRWWKWWRR有效抑制S. aureus的增殖,在体内具有生物相容性和抗菌性该策略可以提高经皮植入物的抗菌潜力,利于预防经皮植入物的细菌感染
[56]HHC36KRWWKWWRR体外实验表现出良好的细胞相容性,显著的短期抗菌性能;体内试验能够抑制细菌感染和炎症反应该涂层有望在钛种植体的应用过程中降低再感染的风险
[57]HHC36、QKKRWWKWWRR、IGKYKLQYLEQWTLK融合两肽修饰的种植体对S. aureusE. coli、铜绿假单胞菌显示出很好的抗菌活性,同时促进细胞增殖、血管形成和骨整合该研究对临床上开发多功能钛种植体,以抑制细菌感染和促进骨整合大有裨益
[58]叠氮基修饰的PEGHHC-36N3-PEG12-KRWWKWWRR抗菌钛植入物对于S. aureus表现出良好且稳定的抗菌活性,对小鼠骨髓间充质干细胞的细胞毒性可忽略不计该方法在制备抗菌钛植入物和预防临床感染方面具有巨大潜力
[59]RGD修饰的HHC36KRWWKWWRR-Acp-RGD可杀灭99%以上的S. aureusE. coli,并显著抑制细菌生物被膜的形成;同时还能显著促进小鼠成骨细胞的黏附和增殖,并显著促进成骨标志物的表达有望预防细菌感染,促进早期骨整合
[60]来源于LL-37的多肽KR-12的类似物KRIVQRIKDFLR、KIRVQRIKDFLR、KRIVRIKFR、KIRVRIKFRE. coli、铜绿假单胞菌和S. aureus表现出良好的抗菌活性,HOS细胞在该材料表面有良好的附着和生长,对细胞无明显毒性这种表面处理方法显示出在许多金属和有机材料表面提供长期抗菌活性的潜力
[61]LL-37LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTESS. aureus有较强的体外抗菌作用,可防止细菌生物被膜的形成;还能显著破坏钛合金表面成熟、稳定的生物膜结构为治疗S. aureus在钛合金假体感染中的难治性感染提供了新的途径
[62]Pac-525Ac-KWRRWVRWI-NH2该涂层可阻碍细菌生物膜生成,抗菌性良好,可促进成骨细胞黏附及增殖为构建具有良好生物活性及抗菌功能的口腔种植体表面涂层提供依据
[63]Pac-525Ac-KWRRWVRWI-NH2对革兰阴性菌(E. coli)和革兰阳性菌(S. aureus)均有较强的细胞毒性作用,同时不影响成骨样细胞系MC3T3-E1的生长和黏附该涂层具有提高钛骨科种植体和口腔种植体的抗菌活性和生物活性方面的潜力
[64]GL13KGKIIKLKASLKLL-CONH2对M1巨噬细胞有抑制作用,对M2巨噬细胞有良好的细胞相容性,可以调节巨噬细胞的极化以及炎症和抗炎作用的表达,减轻炎症过程的影响该表面可能促进骨再生和骨整合的过程
[65]GL13KGKIIKLKASLKLL-CONH2具有良好的生物相容性、促成骨作用,抑制RAW264.7细胞的破骨细胞分化,并显著促进血管生成分化该涂层具有成骨、血管生成和抗破骨细胞生成的特性
[66]GL13KGKIIKLKASLKLL-CONH2对耐甲氧西林金黄色葡萄球菌(methicillin-resistant Staphylococcus aureus,MRSA)、E. coliS. aureus具有较强的接触和释放杀灭能力,在抗菌浓度下具有良好的细胞相容性该涂层有望控制MRSA引起的种植体相关感染
[67]GL13K、MMP9-CPGKIIKLKASLKLL-NH2、KKGGGPLGMYS该表面显示出强大的抗生物膜活性,能够有效地促进成骨细胞和成纤维细胞的增殖,稳定性较好该表面有望降低经皮骨固定装置的感染率,并增强组织的再生能力
[68]GL13K、LamLG3GKIIKLKASLKLL-NH2、NH2-KKGGG-PPFLMLLKGSTRFC显示出抗戈登链球菌的生物膜活性,同时促进口腔来源角质形成细胞的增殖、半桥粒形成和机械附着多功能表面有望能够通过强大的抗菌活性和增强软组织对植入物的附着来降低种植体周炎的发生率
[69]LamLG3KN3-GGG-PPFLMLLKGSTRFC或KK-GGG-PPFLMLLKGSTRFC口腔角质形成细胞的增殖和半桥粒形成显著增加有助于开发更有效的生物医学涂层
[70]LamLG3、Netrin-1PPFLMLLKGSTR、QWRDTWARRLRKFQQREKKGKCRKA人口腔角质形成细胞TERT-2/OKF6在多肽涂层钛表面的增殖速度加快,促进了半桥粒标志物Col XVII和β-4整合素的表达;同时抑制了诱导型一氧化氮合酶的产生;内毒素刺激的小鼠巨噬细胞(RAW 264.7)中表达的促炎M1标志物以及与抗炎M2巨噬细胞表型相关的抗CD206的表达增加该设计可以帮助减轻炎症,促进黏膜/种植体周围软组织的封闭
[71]成骨生长肽ALKRQGRTLYGFGG能够促进成骨细胞的扩散和成骨分化,其抗菌性能明显提高该方法有望加快口腔种植体骨整合速度
[72]基于β氨基酸的AMP模拟物ACHC-β3hVal-β3hLys在体外成功地阻止了S. aureus生物膜的形成,不会显著降低前成骨细胞MC3T3-E1的活性,可在24 d内抑制S. aureus生物膜的形成有望减少与种植体相关的感染的发生
[73]PRELP衍生的AMP RRP9W4NRRPRPRPRPWWWW-NH2AMP具有与传统抗生素氯唑西林相当或更好的抗生物被膜性能,未观察到对骨结合的负面影响介孔二氧化钛具有作为AMP给药系统的潜力;有助于骨整合植入物感染的控制
[74]DJK-5VQWRAIRVRVRVIR对革兰阳性菌和革兰阴性菌的抑菌率均在90%以上,能够间接杀灭细菌、抑制炎症反应该方案有望在严重种植相关细菌感染中实现更好的骨整合
[75]NKC-DOPA5APKAMKLLKKLLKLQKKGIGGGGSGGGGSYYYYY在2 h内完全抑制了E. coli、铜绿假单胞菌和S. aureus的生长,包覆在底物表面的多肽的稳定性为84 d,该表面对人角质形成细胞系HaCaT没有细胞毒性黏附性AMP具有作为抗菌表面涂层的潜力,可以有效地杀灭接触的广谱细菌
[76]蜂毒肽GIGAVLKVLTTGLPALISWIKRKRQQ可促进MC3T3细胞释放碱性磷酸酶及MC3T3细胞的增殖;四环素和蜂毒肽复合涂层可杀灭所有MRSA该涂层具有良好的成骨和抗菌活性,有望成为一种多功能的骨植入涂层
[77]复合氧化石墨烯与AMP NaL-P-113Ac-AKR-Nal-Nal-GYKRKF-Nal-NH2具有缓慢、持续的体外释药特性,负载Nal-P-113的复合氧化石墨烯涂层对革兰阳性变异链球菌和革兰阴性P. gingivalis均表现出良好的抗菌性能,对人牙龈成纤维细胞无明显细胞毒性有望在钛基种植体跨黏膜成分的表面改性中得到应用
[78]Amino pepti-des、Carboxyl peptidesNGIVKAGPAIAVLGEAAL-GGGGS、GGGGS-KRLFRRWQWRMKKY该涂层具有灵敏的pH值响应特性;对S. aureus 21 d的抗菌实验中,抗菌率始终保持在99%以上,还有利于骨髓干细胞在表面的黏附、扩散和增殖,促进成骨基因的表达和胶原蛋白的分泌以及骨整合该涂层具有协同抑制细菌和促进骨整合的能力,在骨缺损和相关感染治疗中具有巨大的潜在应用前景
1 Gorr SU. Antimicrobial peptides of the oral cavity[J]. Periodontol 2000, 2009, 51: 152-180.
2 张玉梅. 浅谈钛种植体抗菌涂层[J]. 口腔材料器械杂志, 2012, 21(2): 61-64.
Zhang YM. Brief introduction of antibactenial coa-tings on titanium implants[J]. Chin J Dent Mater Devices, 2012, 21(2): 61-64.
3 夏春雨, 王宏远. Er: YAG激光在治疗种植体周围炎中的研究进展[J]. 口腔颌面修复学杂志, 2023, 24(2): 154-160.
Xia CY, Wang HY. Research progress of Er: YAG laser in the treatment of peri-implantitis[J]. Chin J Prosthodont, 2023, 24(2): 154-160.
4 Chouirfa H, Bouloussa H, Migonney V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications[J]. Acta Biomater, 2019, 83: 37-54.
5 Zhang QY, Yan ZB, Meng YM, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential[J]. Mil Med Res, 2021, 8(1): 48.
6 Seo MD, Won HS, Kim JH, et al. Antimicrobial peptides for therapeutic applications: a review[J]. Molecules, 2012, 17(10): 12276-12286.
7 Leite ML, da Cunha NB, Costa FF. Antimicrobial peptides, nanotechnology, and natural metabolites as novel approaches for cancer treatment[J]. Pharmacol Ther, 2018, 183: 160-176.
8 Luo Y, Song YZ. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities[J]. Int J Mol Sci, 2021, 22(21): 11401.
9 He M, Zhang HN, Li YJ, et al. Cathelicidin-derived antimicrobial peptides inhibit zika virus through direct inactivation and interferon pathway[J]. Front Immunol, 2018, 9: 722.
10 Tonk M, Pierrot C, Cabezas-Cruz A, et al. The Drosophila melanogaster antimicrobial peptides Mtk-1 and Mtk-2 are active against the malarial parasite Plasmodium falciparum [J]. Parasitol Res, 2019, 118(6): 1993-1998.
11 Peng JJ, Xiao YL, Wan XP, et al. Enhancement of immune response and anti-infection of mice by porcine antimicrobial peptides and interleukin-4/6 fusion gene encapsulated in chitosan nanoparticles[J]. Vaccines (Basel), 2020, 8(3): 552.
12 Thapa RK, Diep DB, Tønnesen HH. Topical antimicrobial peptide formulations for wound healing: current developments and future prospects[J]. Acta Biomater, 2020, 103: 52-67.
13 Wang C, Hong TT, Cui PF, et al. Antimicrobial peptides towards clinical application: delivery and for-mulation[J]. Adv Drug Deliv Rev, 2021, 175: 113818.
14 李谣华, 曾凤娇, 陈彬, 等. 药物涂层预防种植体周围炎的研究与进展[J]. 中国组织工程研究, 2023, 27(30): 4912-4920.
Li YH, Zeng FJ, Chen B, et al. Research advances in drug coatings for prevention of peri-implantitis[J]. Chin J Tissue Eng Res, 2023, 27(30): 4912-4920.
15 Atieh MA, Alsabeeha NH, Faggion CM Jr, et al. The frequency of peri-implant diseases: a systema-tic review and meta-analysis[J]. J Periodontol, 2013, 84(11): 1586-1598.
16 Fragkioudakis I, Tseleki G, Doufexi AE, et al. Current concepts on the pathogenesis of peri-implantitis: a narrative review[J]. Eur J Dent, 2021, 15(2): 379-387.
17 Faveri M, Figueiredo LC, Shibli JA, et al. Microbiological diversity of peri-implantitis biofilms[J]. Adv Exp Med Biol, 2015, 830: 85-96.
18 程磊, 于海洋, 吴尧, 等. 牙种植体周围微生物研究[J]. 华西口腔医学杂志, 2019, 37(1): 7-12.
Cheng L, Yu HY, Wu Y, et al. A review of peri-implant microbiology[J]. West China J Stomatol, 2019, 37(1): 7-12.
19 Zheng H, Xu LX, Wang ZC, et al. Subgingival microbiome in patients with healthy and ailing dental implants[J]. Sci Rep, 2015, 5: 10948.
20 Gazil V, Bandiaky ON, Renard E, et al. Current data on oral peri-implant and periodontal microbiota and its pathological changes: a systematic review[J]. Microorganisms, 2022, 10(12): 2466.
21 Sahrmann P, Gilli F, Wiedemeier DB, et al. The microbiome of peri-implantitis: a systematic review and meta-analysis[J]. Microorganisms, 2020, 8(5): 661.
22 Koyanagi T, Sakamoto M, Takeuchi Y, et al. Analysis of microbiota associated with peri-implantitis u-sing 16S rRNA gene clone library[J]. J Oral Microbiol, 2010, 2. doi: 10.3402/jom.v2i0.5104 .
doi: 10.3402/jom.v2i0.5104
23 Lafaurie GI, Sabogal MA, Castillo DM, et al. Microbiome and microbial biofilm profiles of peri-implantitis: a systematic review[J]. J Periodontol, 2017, 88(10): 1066-1089.
24 Albertini M, López-Cerero L, O’Sullivan MG, et al. Assessment of periodontal and opportunistic flora in patients with peri-implantitis[J]. Clin Oral Implants Res, 2015, 26(8): 937-941.
25 Canullo L, Peñarrocha-Oltra D, Covani U, et al. Microbiologic and clinical findings of implants in healthy condition and with peri-implantitis[J]. Int J Oral Maxillofac Implants, 2015, 30(4): 834-842.
26 Alves CH, Russi KL, Rocha NC, et al. Host-microbiome interactions regarding peri-implantitis and dental implant loss[J]. J Transl Med, 2022, 20(1): 425.
27 Li Y, Ling JQ, Jiang QZ. Inflammasomes in alveolar bone loss[J]. Front Immunol, 2021, 12: 691013.
28 Saremi L, Shafizadeh M, Esmaeilzadeh E, et al. Assessment of IL-10, IL-1β and TNF-α gene polymorphisms in patients with peri-implantitis and healthy controls[J]. Mol Biol Rep, 2021, 48(3): 2285-2290.
29 Thakur A, Sharma A, Alajangi HK, et al. In pursuit of next-generation therapeutics: antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications[J]. Int J Biol Macromol, 2022, 218: 135-156.
30 Mookherjee N, Anderson MA, Haagsman HP, et al. Antimicrobial host defence peptides: functions and clinical potential[J]. Nat Rev Drug Discov, 2020, 19(5): 311-332.
31 Lewies A, Wentzel JF, Jacobs G, et al. The potential use of natural and structural analogues of antimicrobial peptides in the fight against neglected tropical diseases[J]. Molecules, 2015, 20(8): 15392-15433.
32 Khurshid Z, Naseem M, Yahya I Asiri F, et al. Significance and diagnostic role of antimicrobial cathelicidins (LL-37) peptides in oral health[J]. Biomolecules, 2017, 7(4): 80.
33 Ridyard KE, Overhage J. The potential of human peptide LL-37 as an antimicrobial and anti-biofilm agent[J]. Antibiotics (Basel), 2021, 10(6): 650.
34 Koehbach J, Craik DJ. The vast structural diversity of antimicrobial peptides[J]. Trends Pharmacol Sci, 2019, 40(7): 517-528.
35 Bin Hafeez A, Jiang XK, Bergen PJ, et al. Antimicrobial peptides: an update on classifications and databases[J]. Int J Mol Sci, 2021, 22(21): 11691.
36 Mahlapuu M, Håkansson J, Ringstad L, et al. Antimicrobial peptides: an emerging category of therapeutic agents[J]. Front Cell Infect Microbiol, 2016, 6: 194.
37 Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action[J]. Trends Biotechnol, 2011, 29(9): 464-472.
38 Monroc S, Badosa E, Feliu L, et al. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria[J]. Peptides, 2006, 27(11): 2567-2574.
39 Monroc S, Badosa E, Besalú E, et al. Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach[J]. Peptides, 2006, 27(11): 2575-2584.
40 Mika JT, Moiset G, Cirac AD, et al. Structural basis for the enhanced activity of cyclic antimicrobial peptides: the case of BPC194[J]. Biochim Biophys Acta, 2011, 1808(9): 2197-2205.
41 Harris F, Dennison SR, Phoenix DA. Anionic antimicrobial peptides from eukaryotic organisms[J]. Curr Protein Pept Sci, 2009, 10(6): 585-606.
42 Ren L, Hen L, Wen H, et al. An anionic antimicro-bial peptide from toad Bombina maxima[J]. Biochem Biophys Res Commun, 2002, 295(4): 796-799.
43 Dennison SR, Harris F, Mura M, et al. An atlas of anionic antimicrobial peptides from amphibians[J]. Curr Protein Pept Sci, 2018, 19(8): 823-838.
44 Baxter AA, Lay FT, Poon IKH, et al. Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects[J]. Cell Mol Life Sci, 2017, 74(20): 3809-3825.
45 Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides[J]. Drug Resist Updat, 2016, 26: 43-57.
46 Yan YH, Li YZ, Zhang ZW, et al. Advances of peptides for antibacterial applications[J]. Colloids Surf B Biointerfaces, 2021, 202: 111682.
47 Zhang L, Rozek A, Hancock RE. Interaction of ca-tionic antimicrobial peptides with model membranes[J]. J Biol Chem, 2001, 276(38): 35714-35722.
48 Yang L, Harroun TA, Weiss TM, et al. Barrel-stave model or toroidal model? A case study on melittin pores[J]. Biophys J, 2001, 81(3): 1475-1485.
49 Hallock KJ, Lee DK, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain[J]. Biophys J, 2003, 84(5): 3052-3060.
50 Domingues TM, Riske KA, Miranda A. Revealing the lytic mechanism of the antimicrobial peptide gomesin by observing giant unilamellar vesicles[J]. Langmuir, 2010, 26(13): 11077-11084.
51 Patrzykat A, Friedrich CL, Zhang LJ, et al. Suble-thal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli [J]. Antimicrob Agents Chemother, 2002, 46(3): 605-614.
52 Li LR, Shi YH, Cheserek MJ, et al. Antibacterial activity and dual mechanisms of peptide analog derived from cell-penetrating peptide against Salmonella typhimurium and Streptococcus pyogenes [J]. Appl Microbiol Biotechnol, 2013, 97(4): 1711-1723.
53 唐馨, 毛新芳, 马彬云, 等. 抗菌肽的研究现状和挑战[J]. 中国生物工程杂志, 2019, 39(8): 86-94.
Tang X, Mao XF, Ma BY, et al. Antimicrobial peptides: current status and future challenges[J]. China Biotechnol, 2019, 39(8): 86-94.
54 方雨晴, 朱禹赫, 王蔚. 种植体表面纳米改性方法及其生物学效应研究进展[J]. 中国实用口腔科杂志, 2023, 16(1): 110-116.
Fang YQ, Zhu YH, Wang W. Research progress in surface nanocrystallization methods of implants and their biological effects[J]. Chin J Pract Stomatol, 2023, 16(1): 110-116.
55 Miao Q, Sun JL, Huang F, et al. Antibacterial peptide HHC-36 sustained-release coating promotes antibacterial property of percutaneous implant[J]. Front Bioeng Biotechnol, 2021, 9: 735889.
56 Li K, Zhang L, Li JH, et al. pH-responsive ECM coating on Ti implants for antibiosis in reinfected models[J]. ACS Appl Bio Mater, 2022, 5(1): 344-354.
57 Chen JJ, Hu GS, Li TJ, et al. Fusion peptide engineered “statically-versatile” titanium implant simultaneously enhancing anti-infection, vascularization and osseointegration[J]. Biomaterials, 2021, 264: 120446.
58 Chen JJ, Zhu YC, Xiong MH, et al. Antimicrobial titanium surface via click-immobilization of peptide and its in vitro/vivo activity[J]. ACS Biomater Sci Eng, 2019, 5(2): 1034-1044.
59 Wang BB, Bian AQ, Jia FH, et al. “Dual-functional” strontium titanate nanotubes designed based on fusion peptides simultaneously enhancing anti-infection and osseointegration[J]. Biomater Adv, 2022, 133: 112650.
60 Trzcińska Z, Bruggeman M, Ijakipour H, et al. Polydopamine linking substrate for AMPs: characterisation and stability on Ti6Al4V[J]. Materials (Basel), 2020, 13(17): 3714.
61 Wei JT, Cao XP, Qian J, et al. Evaluation of antimicrobial peptide LL-37 for treatment of Staphylococcus aureus biofilm on titanium plate[J]. Medicine, 2021, 100(44): e27426.
62 孙丰权, 李慕勤, 彭书浩, 等. 钛种植体载抗菌肽涂层的抗菌性及其对成骨细胞活性的影响[J]. 中华口腔医学杂志, 2018, 53(6): 419-424.
Sun FQ, Li MQ, Peng SH, et al. Study on antibacterial properties and osteoblast activity of antimicro-bial peptide coatings on titanium implants[J]. Chin J Stomatol, 2018, 53(6): 419-424.
63 He YZ, Li YY, Zuo EJ, et al. A novel antibacterial titanium modification with a sustained release of pac-525[J]. Nanomaterials (Basel), 2021, 11(12): 3306.
64 Chen XX, Zhou L, Wu D, et al. The effects of tita-nium surfaces modified with an antimicrobial peptide GL13K by silanization on polarization, anti-inflammatory, and proinflammatory properties of macrophages[J]. Biomed Res Int, 2020, 2020: 2327034.
65 Zhou L, Han Y, Ding JM, et al. Regulation of an antimicrobial peptide GL13K-modified titanium surface on osteogenesis, osteoclastogenesis, and angiogenesis base on osteoimmunology[J]. ACS Biomater Sci Eng, 2021, 7(9): 4569-4580.
66 Li YS, Chen RY, Wang FS, et al. Antimicrobial peptide GL13K immobilized onto SLA-treated titanium by silanization: antibacterial effect against methicillin-resistant Staphylococcus aureus (MRSA)[J]. RSC Adv, 2022, 12(11): 6918-6929.
67 Fischer NG, Chen X, Astleford-Hopper K, et al. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices[J]. Mater Sci Eng C Mater Biol Appl, 2021, 125: 112108.
68 Fischer NG, Moussa DG, Skoe EP, et al. Keratinocyte-specific peptide-based surfaces for hemidesmosome upregulation and prevention of bacterial colonization[J]. ACS Biomater Sci Eng, 2020, 6(9): 4929-4939.
69 Fischer NG, He JH, Aparicio C. Surface immobilization chemistry of a laminin-derived peptide affects keratinocyte activity[J]. Coatings (Basel), 2020, 10(6): 560.
70 Boda SK, Aparicio C. Dual keratinocyte-attachment and anti-inflammatory coatings for soft tissue sea-ling around transmucosal oral implants[J]. Biomater Sci, 2022, 10(3): 665-677.
71 Liu J, Yang WH, Tao BL, et al. Preparing and immobilizing antimicrobial osteogenic growth peptide on titanium substrate surface[J]. J Biomed Mater Res A, 2018, 106(12): 3021-3033.
72 Rodríguez López AL, Lee MR, Ortiz BJ, et al. Preventing S. aureus biofilm formation on titanium surfaces by the release of antimicrobial β‑peptides from polyelectrolyte multilayers[J]. Acta Biomater, 2019, 93: 50-62.
73 Pihl M, Galli S, Jimbo R, et al. Osseointegration and antibacterial effect of an antimicrobial peptide releasing mesoporous titania implant[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(11): 1787-1795.
74 Wang Y, Zhang JW, Gao T, et al. Covalent immobilization of DJK-5 peptide on porous titanium for enhanced antibacterial effects and restrained inflammatory osteoclastogenesis[J]. Colloids Surf B Biointerfaces, 2021, 202: 111697.
75 Hwang YE, Im S, Kim H, et al. Adhesive antimicrobial peptides containing 3, 4-dihydroxy-L-phenyla-lanine residues for direct one-step surface coating[J]. Int J Mol Sci, 2021, 22(21): 11915.
76 Zarghami V, Ghorbani M, Bagheri KP, et al. Impro-ving bactericidal performance of implant composite coatings by synergism between Melittin and tetracycline[J]. J Mater Sci Mater Med, 2022, 33(6): 46.
77 Cheng Q, Lu R, Wang X, et al. Antibacterial activity and cytocompatibility evaluation of the antimicro-bial peptide Nal-P-113-loaded graphene oxide coating on titanium[J]. Dent Mater J, 2022, 41(6): 905-915.
78 Zhou WH, Bai T, Wang L, et al. Biomimetic AgNPs@antimicrobial peptide/silk fibroin coating for infection-trigger antibacterial capability and enhanced osseointegration[J]. Bioact Mater, 2023, 20: 64-80.
79 Grover V, Chopra P, Mehta M, et al. Improvisation and evaluation of laterosporulin coated titanium surfaces for dental applications: an in vitro investigation[J]. Indian J Microbiol, 2021, 61(2): 203-211.
80 张丽娟. 蜂毒肽分离纯化与体内外抗HSV-1病毒作用研究[D]. 福州: 福建农林大学, 2010.
Zhang LJ. Isolation and purification of melittin and its anti-HSV-1 effect in vitro and in vivo [D]. Fuzhou: Fujian Agriculture and Forestry University, 2010.
81 王倩, 胡欢, 范芹, 等. 种植体周围炎生物膜的微生物群落多样性研究进展[J]. 微生物学通报, 2019, 46(11): 3084-3090.
Wang Q, Hu H, Fan Q, et al. Advances in the diversity of peri-implantitis biofilm microbial communities[J]. Microbiol China, 2019, 46(11): 3084-3090.
82 Ahmadabadi HY, Yu K, Kizhakkedathu JN. Surface modification approaches for prevention of implant associated infections[J]. Colloids Surf B Biointerfa-ces, 2020, 193: 111116.
83 刘育豪, 袁泉, 张士文. 基于共价接枝的钛种植体载药抗菌涂层的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 228-233.
Liu YH, Yuan Q, Zhang SW. Recent research pro-gress on the drug-loaded antibacterial coatings of titanium implants based on covalent grafting[J]. Int J Stomatol, 2019, 46(2): 228-233.
84 Costa B, Martínez-de-Tejada G, Gomes PAC, et al. Antimicrobial peptides in the battle against orthopedic implant-related infections: a review[J]. Pharmaceutics, 2021, 13(11): 1918.
[1] Zheng Zhang,Feng Yang,Jiafeng Li,Kun Cao. Research progress on antimicrobial modification of titanium implants [J]. Int J Stomatol, 2024, 51(5): 585-595.
[2] Xingyue Wen, Junyu Zhao, Chongjun Zhao, Guixin Wang, Ruijie Huang. Research progress on chitosan in periodontal disease treatment [J]. Int J Stomatol, 2024, 51(4): 416-424.
[3] Tan Yongzhen,Liang Xinhua. Research progress on the antibacterial mechanism of oral local anesthetics [J]. Int J Stomatol, 2024, 51(1): 74-81.
[4] Wu Sijia,Shu Chang,Wang Yang,Wang Yuan,Deng Shuli,Wang Huiming.. Effect and research progress on root canal infection management of regenerative endodontic procedure in immature permanent teeth [J]. Int J Stomatol, 2023, 50(4): 388-394.
[5] Gao Yutian,Su Qin. Research and application of electrolyzed-oxidizing water in the field of root canal treatment [J]. Int J Stomatol, 2023, 50(4): 401-406.
[6] Lu Qian,Xia Haibin,Wang Min.. Research progress on implantoplasty in the treatment of peri-implantitis [J]. Int J Stomatol, 2023, 50(2): 152-158.
[7] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[8] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[9] Cao Zhengguo. Periodontal considerations in prosthetic dentistry [J]. Int J Stomatol, 2022, 49(1): 1-11.
[10] Wang Yue,Wen Bing,Deng Mengting,Li Jianping. Research advances of low-level laser therapy on peri-implant tissue healing [J]. Int J Stomatol, 2021, 48(6): 725-730.
[11] Zhu Junjin,Wang Jian.. Advances in the loading methods of silver nanoparticles on the surface of titanium implants [J]. Int J Stomatol, 2021, 48(3): 334-340.
[12] Wang Jia,Li Wenxia,Yin Lihua. Restoration strategy of dental implant for impacted teeth in the edentulous area [J]. Int J Stomatol, 2021, 48(1): 77-81.
[13] Zheng Guiting,Xu Yan,Wu Mingyue. Research progress and consensus of experts on the therapy of peri-implant diseases [J]. Int J Stomatol, 2020, 47(6): 725-731.
[14] Tong Zian,Si Misi. Advances in the decontamination of plaque on implant surface in vitro [J]. Int J Stomatol, 2020, 47(5): 589-594.
[15] Wang Huan,Liu Yang,Qi Mengchun,Li Jingyi,Liu Mengnan,Sun Hong. Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation [J]. Int J Stomatol, 2020, 47(4): 439-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Jinfeng Dou,Xu Cheng,Bing Shi. Research progress on mechanism and drug treatment of orofacial muscle regeneration and fibrosis[J]. Int J Stomatol, 2024, 51(3): 278 -287 .