Int J Stomatol ›› 2026, Vol. 53 ›› Issue (1): 43-50.doi: 10.7518/gjkq.2026201

• Stem Cell • Previous Articles     Next Articles

Osteogenic effect and factors that influence dental pulp stem cells in alveolar bone regeneration

Chengxing Ding1(),Xiaolan Li2,Mingli Yang1()   

  1. 1.School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, China
    2.School of Stomatology, Zunyi Medical University, Zunyi 563000, China
  • Received:2024-12-04 Revised:2025-05-23 Online:2026-01-01 Published:2025-12-31
  • Contact: Mingli Yang E-mail:2816105292@qq.com;63677179@qq.com
  • Supported by:
    2023 Science and Technology Fund Project of Guizhou Provincial Health Commission(gzwkj2023-520);Project of Zunyi Science and Technology Department (Zunyi Science and Technology Cooperation Project HZ [2020]36);Project of Guizhou Province Science and Technology Department (Guizhou Science and Technology Coo-peration [2018]5772-043)

Abstract:

Dental pulp stem cells (DPSCs) have potential for self-renewal and differentiation into various cell types. They can be transplanted into the defect area of the alveolar bone to induce their differentiation into osteoblasts, thereby promoting the regeneration and reconstruction of the alveolar bone. This study reviews the osteogenic ability of DPSCs in alveolar bone regeneration and the factors that influence their osteogenic ability. The challenges faced in the clinical application of DPSCs are analyzed to provide insights into the basic research and clinical application of DPSCs for repairing the alveolar bone.

Key words: dental pulp stem cell, alveolar bone, bone defect, bone regeneration

CLC Number: 

  • R78

TrendMD: 

Fig 1

Mechanisms and the relevant influencing factors of DPSCs in osteogenic differentiation"

[1] Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: biological characteristics and therapeutic applications[J]. Stem Cells Transl Med, 2020, 9(4): 445-464.
[2] Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo [J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.
[3] Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci U S A, 2003, 100(10): 5807-5812.
[4] Nuti N, Corallo C, Chan BM, et al. Multipotent differentiation of human dental pulp stem cells: a literature review[J]. Stem Cell Rev Rep, 2016, 12(5): 511-523.
[5] Ma LS, Hu JC, Cao Y, et al. Maintained properties of aged dental pulp stem cells for superior periodontal tissue regeneration[J]. Aging Dis, 2019, 10(4): 793-806.
[6] Monterubbianesi R, Bencun M, Pagella P, et al. A comparative in vitro study of the osteogenic and a-dipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts[J]. Sci Rep, 2019, 9(1): 1761.
[7] Wang JF, He PB, Tian Q, et al. Genetic modification of miR-34a enhances efficacy of transplanted human dental pulp stem cells after ischemic stroke[J]. Neural Regen Res, 2023, 18(9): 2029-2036.
[8] Carvalho S, Santos JI, Moreira L, et al. Neurological disease modeling using pluripotent and multipotent stem cells: a key step towards understanding and treating mucopolysaccharidoses[J]. Biomedicines, 2023, 11(4): 1234.
[9] Zhang YH, Zhao WH, Jia LY, et al. The application of stem cells in tissue engineering for the regeneration of periodontal defects in randomized controlled trial: a systematic review and meta-analysis[J]. J E-vid Based Dent Pract, 2022, 22(2): 101713.
[10] Li AN, Sasaki JI, Abe GL, et al. Vascularization of a bone organoid using dental pulp stem cells[J]. Stem Cells Int, 2023, 2023: 5367887.
[11] Zhang RT, Xie L, Wu H, et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration[J]. Acta Biomater, 2020, 113: 305-316.
[12] Wang W, Zhu YR, Li JJ, et al. Bioprinting EphrinB2-modified dental pulp stem cells with enhanced osteogenic capacity for alveolar bone engineering[J]. Tissue Eng Part A, 2023, 29(7/8): 244-255.
[13] Guo H, Li B, Wu ML, et al. Odontogenesis-related developmental microenvironment facilitates deci-duous dental pulp stem cell aggregates to revitalize an avulsed tooth[J]. Biomaterials, 2021, 279: 121223.
[14] Shang L, Shao J, Ge S. Immunomodulatory functions of oral mesenchymal stem cells: novel force for tissue regeneration and disease therapy[J]. J Leukoc Biol, 2021, 110(3): 539-552.
[15] Çolpak HA, Gönen ZB, Özdamar S, et al. Vertical ridge augmentation using guided bone regeneration procedure and dental pulp derived mesenchymal stem cells with simultaneous dental implant placement: a histologic study in a sheep model[J]. J Stomatol Oral Maxillofac Surg, 2019, 120(3): 216-223.
[16] Hu JC, Cao Y, Xie YL, et al. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells follo-wing good manufacturing practice[J]. Stem Cell Res Ther, 2016, 7(1): 130.
[17] D’Aquino R, de Rosa A, Lanza V, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge bio complexes[J]. Eur Cell Mater, 2009, 18: 75-83.
[18] Giuliani A, Manescu A, Langer M, et al. Three years after transplants in human mandibles, histolo-gical and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications[J]. Stem Cells Transl Med, 2013, 2(4): 316-324.
[19] Hilkens P, Bronckaers A, Ratajczak J, et al. The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration[J]. Stem Cells Int, 2017, 2017: 2582080.
[20] Huojia M, Wu ZM, Zhang XL, et al. Effect of dental pulp stem cells (DPSCs) in repairing rabbit al-veolar bone defect[J]. Clin Lab, 2015, 61(11): 1703-1708.
[21] Moeenzade N, Naseri M, Osmani F, et al. Dental pulp stem cells for reconstructing bone defects: a systematic review and meta-analysis[J]. J Dent Res Dent Clin Dent Prospects, 2022, 16(4): 204-220.
[22] Hernández-Monjaraz B, Santiago-Osorio E, Ledesma-Martínez E, et al. Dental pulp mesenchymal stem cells as a treatment for periodontal disease in older adults[J]. Stem Cells Int, 2020, 2020: 8890873.
[23] Taşlı PN, Tapşın S, Demirel S, et al. Isolation and characterization of dental pulp stem cells from a patient with Papillon-Lefèvre syndrome[J]. J Endod, 2013, 39(1): 31-38.
[24] Hiraki T, Kunimatsu R, Nakajima K, et al. Stem cell-derived conditioned media from human exfo-liated deciduous teeth promote bone regeneration[J]. Oral Dis, 2020, 26(2): 381-390.
[25] 古扎丽努尔 · 阿巴拜克力, 木合塔尔 · 霍加, 仵韩, 等. 转化生长因子β3联合牙髓干细胞在种植体周围早期骨结合中的作用[J]. 中华口腔医学杂志, 2018, 53(4): 259-263.
Ababaikeli·Guzalinuer, Huojia·Muhetaer, Wu H, et al. Experimental study on the transforming growth factor β3 combined with dental pulp stem cells in early bone integration of implant[J]. Chin J Stomatol, 2018, 53(4): 259-263.
[26] Gao PF, Liu CJ, Dong H, et al. TGF-β promotes the proliferation and osteogenic differentiation of dental pulp stem cells a systematic review and meta-analysis[J]. Eur J Med Res, 2023, 28(1): 261.
[27] Cui DX, Xiao JN, Zhou YC, et al. Epiregulin enhances odontoblastic differentiation of dental pulp stem cells via activating MAPK signalling pathway[J]. Cell Prolif, 2019, 52(6): e12680.
[28] Deng PM, Huang J, Zhang QX, et al. The role of EMILIN-1 in the osteo/odontogenic differentiation of dental pulp stem cells[J]. BMC Oral Health, 2023, 23(1): 203.
[29] Osathanon T, Nowwarote N, Pavasant P. Basic fibroblast growth factor inhibits mineralization but indu-ces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCγ signaling pathway[J]. J Cell Biochem, 2011, 112(7): 1807-1816.
[30] He XY, Jiang WK, Luo ZR, et al. IFN-γ regulates human dental pulp stem cells behavior via NF-κB and MAPK signaling[J]. Sci Rep, 2017, 7: 40681.
[31] Wang W, Yuan CY, Geng TY, et al. EphrinB2 overexpression enhances osteogenic differentiation of dental pulp stem cells partially through ephrinB2-mediated reverse signaling[J]. Stem Cell Res Ther, 2020, 11(1): 40.
[32] Zhong TY, Gao YN, Qiao H, et al. Elevated osteogenic potential of stem cells from inflammatory dental pulp tissues by Wnt4 overexpression for treating bone defect in rats[J]. Ann Palliat Med, 2020, 9(5): 2962-2969.
[33] Choi B, Kim JE, Park SO, et al. Sphingosine-1-phosphate hinders the osteogenic differentiation of dental pulp stem cells in association with AKT signaling pathways[J]. Int J Oral Sci, 2022, 14(1): 21.
[34] Damrongsri D, Nowwarote N, Sonpoung O, et al. Differential expression of Notch related genes in dental pulp stem cells and stem cells isolated from apical papilla[J]. J Oral Biol Craniofac Res, 2021, 11(3): 379-385.
[35] Lu XH, Chen X, Xing J, et al. miR-140-5p regulates the odontoblastic differentiation of dental pulp stem cells via the Wnt1/β-catenin signaling pathway[J]. Stem Cell Res Ther, 2019, 10(1): 226.
[36] Omagari D, Toriumi T, Tsuda H, et al. Inductive effect of SORT1 on odontoblastic differentiation of human dental pulp-derived stem cells[J]. Differen-tiation, 2023, 133: 88-97.
[37] Zhang Y, Qiao WW, Ji YT, et al. GATA4 inhibits odontoblastic differentiation of dental pulp stem cells through targeting IGFBP3[J]. Arch Oral Biol, 2023, 154: 105756.
[38] Zheng CX, Chen J, Liu SY, et al. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation[J]. Int J Oral Sci, 2019, 11(3): 23.
[39] Bar JK, Lis-Nawara A, Grelewski PG. Dental pulp stem cell-derived secretome and its regenerative potential[J]. Int J Mol Sci, 2021, 22(21): 12018.
[40] Meiliana A, Dewi NM, Wijaya A. Mesenchymal stem cell secretome: cell-free therapeutic strategy in regenerative medicine[J]. Indones Biomed J, 2019, 11(2): 113-124.
[41] Ganesh V, Seol D, Gomez-Contreras PC, et al. Exosome-based cell homing and angiogenic differentiation for dental pulp regeneration[J]. Int J Mol Sci, 2022, 24(1): 466.
[42] Brunello G, Zanotti F, Trentini M, et al. Exosomes derived from dental pulp stem cells show different angiogenic and osteogenic properties in relation to the age of the donor[J]. Pharmaceutics, 2022, 14(5): 908.
[43] Shimizu Y, Takeda-Kawaguchi T, Kuroda I, et al. Exosomes from dental pulp cells attenuate bone loss in mouse experimental periodontitis[J]. J Periodontal Res, 2022, 57(1): 162-172.
[44] Zhang WB, Saxena S, Fakhrzadeh A, et al. Use of human dental pulp and endothelial cell seeded tyrosine-derived polycarbonate scaffolds for robust in vivo alveolar jaw bone regeneration[J]. Front Bioeng Biotechnol, 2020, 8: 796.
[45] Enukashvily NI, Dombrovskaya JA, Kotova AV, et al. Fibrin glue implants seeded with dental pulp and periodontal ligament stem cells for the repair of pe-riodontal bone defects: a preclinical study[J]. Bioengineering, 2021, 8(6): 75.
[46] Mandakhbayar N, El-Fiqi A, Dashnyam K, et al. Feasibility of defect tunable bone engineering using electroblown bioactive fibrous scaffolds with dental stem cells[J]. ACS Biomater Sci Eng, 2018, 4(3): 1019-1028.
[47] Lin CY, Kuo PJ, Chin YT, et al. Dental pulp stem cell transplantation with 2,3,5,4’-tetrahydroxystilbene-2-O‑β‑D-glucoside accelerates alveolar bone regeneration in rats[J]. J Endod, 2019, 45(4): 435-441.
[48] Yuan MT, Zhan YB, Hu WP, et al. Aspirin promotes osteogenic differentiation of human dental pulp stem cells[J]. Int J Mol Med, 2018, 42(4): 1967-1976.
[49] Li MY, Wang YM, Xue J, et al. Baicalin can enhance odonto/osteogenic differentiation of inflammatory dental pulp stem cells by inhibiting the NF-κB and β‑catenin/Wnt signaling pathways[J]. Mol Biol Rep, 2023, 50(5): 4435-4446.
[50] Kim Y, Park HJ, Kim MK, et al. Naringenin stimulates osteogenic/odontogenic differentiation and migration of human dental pulp stem cells[J]. J Dent Sci, 2023, 18(2): 577-585.
[51] Mendoza AH, Balzarini D, Alves T, et al. Potential of mesenchymal stem cell sheets on periodontal regeneration: a systematic review of pre-clinical stu-dies[J]. Curr Stem Cell Res Ther, 2023, 18(7): 958-978.
[52] Aimetti M, Ferrarotti F, Gamba MN, et al. Regene-rative treatment of periodontal intrabony defects u-sing autologous dental pulp stem cells: a 1-year follow-up case series[J]. Int J Periodontics Restorative Dent, 2018, 38(1): 51-58.
[53] Ferrarotti F, Romano F, Gamba MN, et al. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: a randomized controlled clinical trial[J]. J Clin Periodontol, 2018, 45(7): 841-850.
[54] Tanikawa DYS, Pinheiro CCG, Almeida MCA, et al. Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients[J]. Stem Cells Int, 2020, 2020: 6234167.
[55] Nguyen-Thi TD, Nguyen-Huynh BH, Vo-Hoang TT, et al. Stem cell therapies for periodontal tissue regeneration: a meta-analysis of clinical trials[J]. J Oral Biol Craniofac Res, 2023, 13(5): 589-597.
[1] Tianyuan Li, Tongxin Zhu, Qing Liu, Yingchun Dong, Bin Chen. Clinical efficacy of mesenchymal stem cells on periodontal regeneration: a systematic review and meta-analysis [J]. Int J Stomatol, 2025, 52(3): 296-307.
[2] Zhikai Liu,Hanghang Liu,Shibo Liu,Bolun Li,Yao Liu,En Luo. Promotion of mandibular defect healing through the regulation of osteogenic and angiogenic functions by sirtuin 1 [J]. Int J Stomatol, 2025, 52(3): 349-357.
[3] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[4] Yu Yuelin,Kong Weidong. Research progress on the association between primary failure of tooth eruption and parathyroid hormone receptor 1 gene [J]. Int J Stomatol, 2023, 50(5): 573-580.
[5] Yu Lerong,Li Xiangwei,Ai Hong. Research progress on the stemness maintenance of dental pulp stem cells [J]. Int J Stomatol, 2023, 50(4): 463-471.
[6] Xu Yanxue,Fu Li.. Research progress on functionally graded membranes for guided bone regeneration [J]. Int J Stomatol, 2023, 50(3): 353-358.
[7] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[8] Yin Yijia,Yang Jinting,Shen Jianqi,Huang Lingyi,Jing Yan,Guan Qiuyue,Han Xianglong. Endothelial-cell-specific overexpression of Dickkopf 1 using Cadherin 5 promoter regulates osteogenesis in vivo [J]. Int J Stomatol, 2022, 49(6): 641-647.
[9] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[10] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[11] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[12] Li Yanfei,Zhang Xinchun. Research progress on the dentin bone repair material [J]. Int J Stomatol, 2022, 49(2): 197-203.
[13] Fu Hengyi,Wang Chenglin. Research progress on serum-free culture methods of human dental pulp stem cells and cell characterization [J]. Int J Stomatol, 2022, 49(2): 220-226.
[14] Jiang Duan,Shen Daonan,Zhao Lei,Wu Yafei. Research progress on the relationship between new anti-inflammatory factor developmental endothelial locus-1 and periodontitis [J]. Int J Stomatol, 2022, 49(2): 244-248.
[15] Xiong Menglin,Wu Long,Ma Li,Zhao Jin. Role of transforming growth factor-β2 in promoting the proliferation and differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 635-639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!