Int J Stomatol ›› 2025, Vol. 52 ›› Issue (6): 806-815.doi: 10.7518/gjkq.2025097

• Reviews • Previous Articles     Next Articles

Research progress on the relationship among oral microbiota, gut microbiota, and systemic diseases in children

Hanguo Feng1,2,3(),Nanquan Rao1,2,3,Xinyi Zeng1,2,3,Siyuan Yu1,2,3,Juan Liu1,2,3()   

  1. 1.Dept. of Pediatric Dentistry, the Affiliated Stomatology Hospital, Kunming Medical University, Kunming 650106, China
    2.Dept. of Pediatric Dentistry, Stomatology Hospital of Yunnan Province, Kunming 650106, China
    3.Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming 650106, China
  • Received:2024-10-10 Revised:2025-01-07 Online:2025-11-01 Published:2025-10-23
  • Contact: Juan Liu E-mail:fenghanguo2022@163.com;liujuan@kmmu.edu.cn
  • Supported by:
    National Key Clinical Specialty Development Project of Pediatric Dentistry Division(20230610);Scienti-fic Research Project of Education Department of Yunnan Province(2025J0168);Clinical Scientific Research Project of National Key Clinical Specialty Development Project of Pediatric Dentistry Division(EYQ2024002)

Abstract:

The oral cavity is a gateway to the gastrointestinal tract. The relative abundance of common oral bacteria in the intestine of individuals with systemic diseases increases. The oral microbiota interact with the intestinal microbiota, which induces intestinal dysbiosis and intestinal mucosa damage. Compared with the oral and intestinal microbiota of adults, those of children are more sensitive to external stimuli, and they change dynamically with growth and development. Childhood may be the critical time for microbiota interventions to prevent diseases. This review discusses the establishment and development of oral and intestinal microbiota. The relationship between oral microbiota and intestinal microbiota in children with systemic diseases is also determined. This review offers new avenues for the prevention, diagnosis, and treatment of diseases.

Key words: oral microbiomes, gastrointestinal microbiomes, children, system diseases

CLC Number: 

  • R725.9

TrendMD: 

Tab 1

Oral and intestinal microbiota and their metabolites associated with childhood obesity"

作者

研究对象

年龄/国家

检测方法口腔肠道
Ma等[25]3~5岁/中国对唾液、粪便样本进行第3代长距离DNA测序

微生物多样性↑,F/B↑;

丁酸弧菌属(Butyrivibrio)↑,异普雷沃菌属(Alloprevotella)↓

微生物多样性↓,F/B↑;

梭菌纲(Clostridia)、瘤胃球菌科(Ruminococcaceae)和Faecalibacterium↑,拟杆菌门、克雷伯氏菌属(Klebsiella)和柠檬酸杆菌属(Citrobacter)↓

Mameli等[26]10~12岁/意大利对唾液样本进行16S rDNA测序

微生物丰富度↓;

变形菌纲(Gammaproteobacteria)和Negativicutes↓

/
Mervish等[27]10~17岁/美国对唾液样本进行16S rRNA测序

微生物丰富度↓;

巨球形菌属(Megasphaera)↑,乳杆菌属(Lactobacillus)↓

/
Li等[28]8~12岁/中国对粪便样本进行16S rRNA测序/

微生物丰富度↓,F/B↑;

厚壁菌门、梭菌纲、普雷沃菌属和肠杆菌科(Enterobacteriaceae)↑,拟杆菌门、双歧杆菌目(Bifidobacteriales)、Akkermansia muciniphila和乳杆菌属↓

Wei等[29]6~9岁/中国对粪便样本进行16S rRNA测序、高效液相色谱检测/布劳特菌属(Blautia)和罗氏菌属(Rothia)↑,Ruminococcus gavusFlavonifractor lasttii↓,SCFAs↑

Tab 2

Oral and intestinal microbiota and their metabolites associated with T1D in children"

作者

研究对象

年龄/国家

检测方法口腔肠道
Wang等[12]7~11岁/中国对口咽、粪便样本进行16S rRNA测序链球菌属、普雷沃菌属、纤毛菌属(Leptotrichia)和奈瑟球菌属(Neisseria)↑布劳特菌属、拟杆菌属和Eubacterium_hallii↑,氨基酸生成、脂肪酸代谢和核苷酸糖生物合成↑
Yuan等[36]3~15岁/中国对唾液样本进行16S rRNA 测序

微生物丰富度和多样性↓;

厚壁菌门、放线菌门(Actinobacteria)、链球菌属、奈瑟球菌属↑;拟杆菌门、韦荣球菌属、普雷沃菌属和梭杆菌属(Fusobacterium)↓

/
Ho等[37]9~5岁/加拿大对粪便样本进行16S rRNA测序/

微生物多样性↑;

链球菌属、Roseburia inulinivoransFaecalibacterium

Yuan等[38]5~11岁/中国分别对粪便、血液样本进行16S rRNA测序和代谢组学分析/

微生物丰富度和多样性↓;

厚壁菌门和Escherichia shigella↑,拟杆菌门、变形菌门(Proteobacteria)、Faecalibacterium和布劳特菌属↓,丁酸盐生成和胆汁酸代谢↓,LPS生物合成↑

Tab 3

Oral and intestinal microbiota and their metabolites associated with IBD in children"

作者研究对象年龄/国家检测方法口腔肠道
Monleón-Getino等[45]6~18岁/西班牙对唾液、粪便样本进行宏基因组学研究

微生物多样性↓;

缓症链球菌(Streptococcus mitis)↑

微生物多样性↓;

缓症链球菌和血链球菌(Streptococcus sanguinis)↑ ,脆弱拟杆菌(Bacteriodes fragilis)↓

Elmaghrawy等[46]9~14 岁/爱尔兰对舌背微生物进行16S rRNA测序

微生物丰富度和多样性↓;

链球菌属、乳杆菌属和卟啉单胞菌属(Porphyromonas)↑,韦荣球菌属、口腔杆菌属(Oribacterium)、普雷沃菌属和梭杆菌属↓

/
Shaw等[47]≤17 岁/美国对粪便样本进行16S rRNA测序/

微生物多样性↓;

Akkermansia、梭杆菌属和韦荣球菌属↑,粪球菌属(Coprococcus)和Faecalibacterium↓,粪便钙卫蛋白水平↑

Schirmer等[48]4~16岁/美国对粪便样本进行16S rRNA测序,直肠活检和血清学分析/

微生物多样性↓;

咽峡炎链球菌(Streptococcus anginosus)、小韦荣菌(Veillonella parvula)、副流感嗜血杆菌(Haemophilus parainfluenzae)↑ ,毛螺旋菌科(Lachnospiraceae)↓,粪便钙卫蛋白水平↑,免疫球蛋白 A、抗外膜孔蛋白↓

Tab 4

Oral and intestinal microbiota and their metabolites associated with celiac disease in children"

作者研究对象年龄/国家检测方法口腔肠道
Francavilla等[53]8~11岁/意大利对唾液样本进行16S rRNA测序和代谢组学分析血链球菌属、卟啉单胞菌属属、南锡普雷沃菌(Prevotella nanceiensis)↑,新月形单胞菌属(Selenomonas)、小韦荣菌↓,挥发性有机化合物、醇类和酚类↓/
Ercolini等[54]7~9岁/意大利对唾液样本进行16S rRNA测序

微生物多样性↓;

短链小球菌属(Granulicatella)、卟啉单胞菌属和奈瑟球菌属↑,梭菌属、韦荣球菌属和普雷沃菌属↓,氨基酸、维生素和辅助因子代谢↑

/
Leonard等[55]≤1 岁/英国对粪便样本进行宏基因组学、代谢组学分析/肠球菌属(Enterococcus)↑,链球菌属、韦荣球菌属↓,羟基苯乙酸↑,叶酸生物合成↓
Girdhar等[56]2~5岁/美国对粪便样本进行16S rRNA测序、代谢组学分析/瘤胃球菌科、梭菌属↑,Akkermansia、普雷沃菌属↓

Tab 5

Oral and intestinal microbiota and their metabolites associated with ASD in children"

作者研究对象年龄/国家检测方法口腔肠道
Kong等[7]平均15岁/美国对唾液、粪便样本进行16S rRNA测序小单胞菌属(Parvimonas)↓,芽孢杆菌纲(Bacilli)未定义的属和丙酸杆菌属(Propionibacte-rium)↑

F/B↑;

变形菌门、短链小球菌属↑,Collinsella和优杆菌属(Eubacterium)↓

Manghi等[64]平均9岁/意大利对唾液样本进行宏基因组学分析普雷沃菌属、Actinomyces hongkongensis和龋齿罗氏菌(Rothia dentocariosa)↑,多巴胺和γ-氨基丁酸降解↑,谷氨酸代谢↓/
Qiao等[65]9~11岁/中国对唾液、龈上菌斑样本进行16S rRNA测序

微生物多样性和丰富度↓;

嗜血菌属(Haemophilus)、链球菌属↓,普雷沃菌属、新月形单胞菌属、放线菌属(Actinomyces)、卟啉单胞菌属、梭杆菌属↓

/
Jones等[66]1~3岁/美国对粪便样本进行16S rRNA测序、粪便SCFA浓度分析/肠杆菌科↑,韦荣球菌属↓,SCFA↑
Dan等[67]1~13岁/中国对粪便样本进行宏基因组学和代谢组学分析/Dialister、Escherichia shigella↑,普雷沃菌属和Megamonas↓,γ-氨基丁酸前体↑,多巴胺代谢↓
[1] Ronan V, Yeasin R, Claud EC. Childhood development and the microbiome-the intestinal microbiota in maintenance of health and development of di-sease during childhood development[J]. Gastroente-rology, 2021, 160(2): 495-506.
[2] 程兴群, 徐欣, 周学东. 口腔微生物与肠道微生物的关系[J]. 华西口腔医学杂志, 2017, 35(3): 322-327.
Cheng XQ, Xu X, Zhou XD. Relationship between oral and gut microbes[J]. West China J Stomatol, 2017, 35(3): 322-327.
[3] Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4): 837-848.
[4] Xiao J, Fiscella KA, Gill SR. Oral microbiome: possible harbinger for children’s health[J]. Int J Oral Sci, 2020, 12(1): 12.
[5] Xu J, Zhang Y, Fang XH, et al. The oral bacterial microbiota facilitates the stratification for ulcerative colitis patients with oral ulcers[J]. Ann Clin Microbiol Antimicrob, 2023, 22(1): 99.
[6] Abdelbary MMH, Hatting M, Bott A, et al. The oral-gut axis: salivary and fecal microbiome dysbiosis in patients with inflammatory bowel disease[J]. Front Cell Infect Microbiol, 2022, 12: 1010853.
[7] Kong XJ, Liu J, Cetinbas M, et al. New and preliminary evidence on altered oral and gut microbiota in individuals with autism spectrum disorder (ASD): implications for ASD diagnosis and subtyping based on microbial biomarkers[J]. Nutrients, 2019, 11(9): 2128.
[8] Kitamoto S, Nagao-Kitamoto H, Jiao YZ, et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis[J]. Cell, 2020, 182(2): 447-462.e14.
[9] Kato T, Yamazaki K, Nakajima M, et al. Oral admini-stration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome[J]. mSphere, 2018, 3(5): e00460-e00418.
[10] Wang AL, Zhai ZH, Ding YY, et al. The oral-gut microbiome axis in inflammatory bowel disease: from inside to insight[J]. Front Immunol, 2024, 15: 1430001.
[11] Wang W, Yan YQ, Yu FR, et al. Role of oral and gut microbiota in childhood obesity[J]. Folia Microbiol, 2023, 68(2): 197-206.
[12] Wang LM, Gong C, Wang RY, et al. A pilot study on the characterization and correlation of oropharyngeal and intestinal microbiota in children with type 1 diabetes mellitus[J]. Front Pediatr, 2024, 12: 1382466.
[13] Esposito MV, Nardelli C, Granata I, et al. Setup of quantitative PCR for oral Neisseria spp. evaluation in celiac disease diagnosis[J]. Diagnostics (Basel), 2019, 10(1): 12.
[14] Chen B, Wang JW, Wang Y, et al. Oral microbiota dysbiosis and its association with Henoch-Schönlein Purpura in children[J]. Int Immunopharmacol, 2018, 65: 295-302.
[15] Frid P, Baraniya D, Halbig J, et al. Salivary oral microbiome of children with juvenile idiopathic arthritis: a Norwegian cross-sectional study[J]. Front Cell Infect Microbiol, 2020, 10: 602239.
[16] Zhu WX, Wu YL, Liu H, et al. Gut-lung axis: microbial crosstalk in pediatric respiratory tract infections[J]. Front Immunol, 2021, 12: 741233.
[17] Martin R, Makino H, Cetinyurek Yavuz A, et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the develo-ping gut microbiota[J]. PLoS One, 2016, 11(6): e0158498.
[18] Craig SJC, Blankenberg D, Parodi ACL, et al. Child weight gain trajectories linked to oral microbiota composition[J]. Sci Rep, 2018, 8(1): 14030.
[19] Bäckhed F, Roswall J, Peng YQ, et al. Dynamics and stabilization of the human gut microbiome du-ring the first year of life[J]. Cell Host Microbe, 2015, 17(6): 852.
[20] Oba PM, Holscher HD, Mathai RA, et al. Diet influen-ces the oral microbiota of infants during the first six months of life[J]. Nutrients, 2020, 12(11): 3400.
[21] Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402): 222-227.
[22] Mason MR, Chambers S, Dabdoub SM, et al. Cha-racterizing oral microbial communities across dentition states and colonization niches[J]. Microbiome, 2018, 6(1): 67.
[23] Suárez-Martínez C, Santaella-Pascual M, Yagüe-Guirao G, et al. Infant gut microbiota colonization: influence of prenatal and postnatal factors, focusing on diet[J]. Front Microbiol, 2023, 14: 1236254.
[24] Hampl SE, Hassink SG, Skinner AC, et al. Clinical practice guideline for the evaluation and treatment of children and adolescents with obesity[J]. Pedia-trics, 2023, 151(2): e2022060640.
[25] Ma T, Wu ZY, Lin J, et al. Characterization of the oral and gut microbiome in children with obesity aged 3 to 5 years[J]. Front Cell Infect Microbiol, 2025, 13: 1102650.
[26] Mameli C, Cattaneo C, Panelli S, et al. Taste perception and oral microbiota are associated with obesity in children and adolescents[J]. PLoS One, 2019, 14(9): e0221656.
[27] Mervish NA, Hu JZ, Hagan LA, et al. Associations of the oral microbiota with obesity and menarche in inner city girls[J]. J Child Obes, 2019, 4(1): 2.
[28] Li XM, Lv Q, Chen YJ, et al. Association between childhood obesity and gut microbiota: 16S rRNA gene sequencing-based cohort study[J]. World J Gastroenterol, 2024, 30(16): 2249-2257.
[29] Wei YH, Liang JJ, Su YX, et al. The associations of the gut microbiome composition and short-chain fatty acid concentrations with body fat distribution in children[J]. Clin Nutr, 2021, 40(5): 3379-3390.
[30] CMDSP Indiani, Rizzardi KF, Castelo PM, et al. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review[J]. Child Obes, 2018, 14(8): 501-509.
[31] Teyani R, Moniri NH. Gut feelings in the islets: the role of the gut microbiome and the FFA2 and FFA3 receptors for short chain fatty acids on β-cell function and metabolic regulation[J]. Br J Pharmacol, 2023, 180(24): 3113-3129.
[32] Grahnemo L, Nethander M, Coward E, et al. Cross-sectional associations between the gut microbe Ruminococcus gnavus and features of the metabolic syndrome[J]. Lancet Diabetes Endocrinol, 2022, 10(7): 481-483.
[33] Stefura T, Zapała B, Gosiewski T, et al. Differences in compositions of oral and fecal microbiota between patients with obesity and controls[J]. Medicina, 2021, 57(7): 678.
[34] Quattrin T, Mastrandrea LD, Walker LSK. Type 1 diabetes[J]. Lancet (London, England), 2023, 401(10394): 2149-2162.
[35] de Groot PF, Belzer C, Aydin Ö, et al. Distinct fecal and oral microbiota composition in human type 1 dia-betes, an observational study[J]. PLoS One, 2017, 12(12): e0188475.
[36] Yuan XX, Wu J, Chen RM, et al. Characterization of the oral microbiome of children with type 1 diabetes in the acute and chronic phases[J]. J Oral Microbiol, 2022, 14(1): 2094048.
[37] Ho J, Nicolucci AC, Virtanen H, et al. Effect of prebiotic on microbiota, intestinal permeability, and glycemic control in children with type 1 diabetes[J]. J Clin Endocrinol Metab, 2019, 104(10): 4427-4440.
[38] Yuan XX, Wang RR, Han B, et al. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes[J]. Nat Commun, 2022, 13(1): 6356.
[39] Kunath BJ, Hickl O, Queirós P, et al. Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integratedmulti-omic analyses[J]. Microbiome, 2022, 10(1): 243.
[40] Takahashi N, Saito K, Schachtele CF, et al. Acid to-lerance and acid-neutralizing activity of Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum [J]. Oral Microbiol Immunol, 1997, 12(6): 323-328.
[41] Kaci G, Goudercourt D, Dennin V, et al. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract[J]. Appl Environ Microbiol, 2014, 80(3): 928-934.
[42] Biassoni R, di Marco E, Squillario M, et al. Gut microbiota in T1DM-onset pediatric patients: machine-learning algorithms to classify microorganisms as disease linked[J]. J Clin Endocrinol Metab, 2020, 105(9): dgaa407.
[43] Rosell-Mases E, Santiago A, Corral-Pujol M, et al. Mutual modulation of gut microbiota and the immune system in type 1 diabetes models[J]. Nat Commun, 2023, 14(1): 7770.
[44] Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease[J]. Nature, 2012, 491(7422): 119-124.
[45] Monleón-Getino A, Pujol-Muncunill G, Méndez Viera J, et al. A pilot study of the use of the oral and faecal microbiota for the diagnosis of ulcerative colitis and Crohn’s disease in a paediatric population[J]. Front Pediatr, 2023, 11: 1220976.
[46] Elmaghrawy K, Fleming P, Fitzgerald K, et al. The oral microbiome in treatment-Naïve paediatric IBD patients exhibits dysbiosis related to disease severity that resolves following therapy[J]. J Crohns Colitis, 2023, 17(4): 553-564.
[47] Shaw KA, Bertha M, Hofmekler T, et al. Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease[J]. Genome Med, 2016, 8(1): 75.
[48] Schirmer M, Denson L, Vlamakis H, et al. Compositional and temporal changes in the gut microbiome of pediatric ulcerative colitis patients are linked to disease course[J]. Cell Host Microbe, 2018, 24(4): 600-610.e4.
[49] 张浩楠, 周学东, 徐欣, 等. 口腔微生物与炎症性肠病的关系[J]. 华西口腔医学杂志, 2019, 37(4): 443-449.
Zhang HN, Zhou XD, Xu X, et al. Oral microbiota and inflammatory bowel disease[J]. West China J Stomatol, 2019, 37(4): 443-449.
[50] Atarashi K, Suda W, Luo CW, et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation[J]. Science, 2017, 358(6361): 359-365.
[51] Lebwohl B, Rubio-Tapia A. Epidemiology, presentation, and diagnosis of celiac disease[J]. Gastroentero-logy, 2021, 160(1): 63-75.
[52] Sahin Y. Celiac disease in children: a review of the literature[J]. World J Clin Pediatr, 2021, 10(4): 53-71.
[53] Francavilla R, Ercolini D, Piccolo M, et al. Salivary microbiota and metabolome associated with celiac disease[J]. Appl Environ Microbiol, 2014, 80(11): 3416-3425.
[54] Ercolini D, Francavilla R, Vannini L, et al. From an imbalance to a new imbalance: Italian-style gluten-free diet alters the salivary microbiota and metabolome of African celiac children[J]. Sci Rep, 2015, 5: 18571.
[55] Leonard MM, Karathia H, Pujolassos M, et al. Multi-omics analysis reveals the influence of gene-tic and environmental risk factors on developing gut microbiota in infants at risk of celiac disease[J]. Microbiome, 2020, 8(1): 130.
[56] Girdhar K, Dogru YD, Huang Q, et al. Dynamics of the gut microbiome, IgA response, and plasma metabolome in the development of pediatric celiac di-sease[J]. Microbiome, 2023, 11(1): 9.
[57] Iaffaldano L, Granata I, Pagliuca C, et al. Oropharyngeal microbiome evaluation highlights Neisseria abundance in active celiac patients[J]. Sci Rep, 2018, 8(1): 11047.
[58] D’Argenio V, Casaburi G, Precone V, et al. Metagenomics reveals dysbiosis and a potentially pathoge-nic N. flavescens strain in duodenum of adult celiac patients[J]. Am J Gastroenterol, 2016, 111(6): 879-890.
[59] Laparra JM, Olivares M, Gallina O, et al. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model[J]. PLoS One, 2012, 7(2): e30744.
[60] Fernandez-Feo M, Wei G, Blumenkranz G, et al. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac di-sease and gluten sensitivity[J]. Clin Microbiol Infect, 2013, 19(9): E386-E394.
[61] Zeidan J, Fombonne E, Scorah J, et al. Global prevalence of autism: a systematic review update[J]. Autism Res, 2022, 15(5): 778-790.
[62] Al-Beltagi M. Autism medical comorbidities[J]. World J Clin Pediatr, 2021, 10(3): 15-28.
[63] Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, et al. A comprehensive review on the role of the gut microbiome in human neurological disorders[J]. Clin Microbiol Rev, 2022, 35(1): e0033820.
[64] Manghi P, Filosi M, Zolfo M, et al. Large-scale metagenomic analysis of oral microbiomes reveals markers for autism spectrum disorders[J]. Nat Commun, 2024, 15(1): 9743.
[65] Qiao YN, Wu MT, Feng Y, et al. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls[J]. Sci Rep, 2018, 8(1): 1597.
[66] Jones J, Reinke SN, Mousavi-Derazmahalleh M, et al. Changes to the gut microbiome in young children showing early behavioral signs of autism[J]. Front Microbiol, 2022, 13: 905901.
[67] Dan Z, Mao XH, Liu QS, et al. Altered gut micro-bial profile is associated with abnormal metabolism activity of Autism Spectrum Disorder[J]. Gut Microbes, 2020, 11(5): 1246-1267.
[68] Bowland GB, Weyrich LS. The oral-microbiome-brain axis and neuropsychiatric disorders: an anthropological perspective[J]. Front Psychiatry, 2022, 13: 810008.
[69] Anand S, Kaur H, Mande SS. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens[J]. Front Microbiol, 2016, 7: 1945.
[70] Alharthi A, Alhazmi S, Alburae N, et al. The human gut microbiome as a potential factor in autism spectrum disorder[J]. Int J Mol Sci, 2022, 23(3): 1363.
[71] Dong JJ, Li W, Wang Q, et al. Relationships between oral microecosystem and respiratory diseases[J]. Front Mol Biosci, 2021, 8: 718222.
[72] Heijink IH, Kuchibhotla VNS, Roffel MP, et al. Epithelial cell dysfunction, a major driver of asthma development[J]. Allergy, 2020, 75(8): 1902-1917.
[73] Olszak T, An DD, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function[J]. Science, 2012, 336(6080): 489-493.
[1] Feng Han,Fengjie Zhu,Li Gao. Risk factors and prevention strategies of secondary caries in children [J]. Int J Stomatol, 2025, 52(1): 76-81.
[2] Sixin Jiang,Wenjin Shi,Xiaobo Luo,Qianming Chen. Research progress of the diagnosis and treatment of viral stomatitis in children [J]. Int J Stomatol, 2024, 51(5): 519-531.
[3] Wu Li’an. Application of partial crown reattachment in complicated crown-root fractures of permanent anterior teeth in children [J]. Int J Stomatol, 2023, 50(6): 623-631.
[4] Ren Hai-xia,Liu Yingfeng,Liang Huimin,Li Jiayong,Wen Chunqin,Wang Chunmei. Intervention effect of virtual reality technology on dental fear in the treatment of deep caries in children [J]. Int J Stomatol, 2022, 49(5): 529-536.
[5] He Hong.. Clinical diagnosis and strategies for early orthodontic treatment of Class Ⅲ malocclusion with tonsillar hypertrophy in children [J]. Int J Stomatol, 2022, 49(3): 249-254.
[6] Yu Lintong,Song Guangtai. Application of erbium laser in pediatric dentistry [J]. Int J Stomatol, 2020, 47(3): 351-355.
[7] Dan Liu,Bochun Mao,Ruyan Luo,Ke Cui,Bing Shi,Caixia Gong. Family resilience for families of children with cleft lip and palate and discussion on its influencing factors [J]. Int J Stomatol, 2019, 46(3): 297-301.
[8] Ding Jie, Song Guangtai.. Clinical application of minimally invasive techniques in the management of children’s dental caries [J]. Inter J Stomatol, 2018, 45(4): 473-479.
[9] You Wenzhe, Xia Bin.. Oral health promotion and maintenance of mental/intellectual disabled children [J]. Inter J Stomatol, 2018, 45(4): 492-496.
[10] Liu Xiaohua, Wang Enbo. Application progress on cone beam computed tomography imaging localization in extraction of embedded supernumerary teeth in children [J]. Inter J Stomatol, 2018, 45(3): 295-300.
[11] Cai Donglin, Lu Rui. Research progress on the etiology of recurrent aphthous ulcer in children [J]. Inter J Stomatol, 2018, 45(2): 145-149.
[12] Gao Xuebin, Zhang Qi, Li Jing, Bi Ye, Yang Hua, Huang Yang. A clinical study on the choice of etching agent for pit and fissure sealing in younger children [J]. Inter J Stomatol, 2017, 44(4): 433-436.
[13] Sun Chengjun, Xu Fangqing, Chen Yangping, Liu Fengyi, Luo Jiaying, Xia Binbin. Impacts of malocclusion on daily performances in urban and rural children [J]. Inter J Stomatol, 2017, 44(3): 304-309.
[14] Zhu Zheng, Shi Jun.. Prospects on the treatment of mandibular condylar fractures in children [J]. Inter J Stomatol, 2017, 44(2): 222-227.
[15] Huang Zhenxian1, Wang Qiaojing2. Progress of rapid maxillary expansion for managing pediatric obstructive apnea sleep syndrome [J]. Inter J Stomatol, 2017, 44(2): 218-221.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!