Int J Stomatol ›› 2023, Vol. 50 ›› Issue (2): 217-223.doi: 10.7518/gjkq.2023038
• Reviews • Previous Articles Next Articles
CLC Number:
1 | 段小红. 口腔罕见病名录(第一版)[J]. 中华口腔医学杂志, 2020, 55(7): 494-500. |
Duan XH. The first edition of oral rare diseases list[J]. Chin J Stomatol, 2020, 55(7): 494-500. | |
2 | Gawron K, Łazarz-Bartyzel K, Potempa J, et al. Gingival fibromatosis: clinical, molecular and therapeutic issues[J]. Orphanet J Rare Dis, 2016, 11: 9. |
3 | Majumder P, Nair V, Mukherjee M, et al. The autosomal recessive inheritance of hereditary gingival fibromatosis[J]. Case Rep Dent, 2013, 2013: 432864. |
4 | Costa CRR, Braz SV, de Toledo IP, et al. Syndromes with gingival fibromatosis: a systematic review[J]. Oral Dis, 2021, 27(4): 881-893. |
5 | Hart TC, Pallos D, Bowden DW, et al. Genetic lin-kage of hereditary gingival fibromatosis to chromosome 2p21[J]. Am J Hum Genet, 1998, 62(4): 876-883. |
6 | Xiao S, Wang X, Qu B, et al. Refinement of the locus for autosomal dominant hereditary gingival fibromatosis (GINGF) to a 3.8-cM region on 2p21[J]. Genomics, 2000, 68(3): 247-252. |
7 | Xiao S, Bu L, Zhu L, et al. A new locus for hereditary gingival fibromatosis (GINGF2) maps to 5q13-Q22[J]. Genomics, 2001, 74(2): 180-185. |
8 | Ye X, Shi L, Cheng Y, et al. A novel locus for autosomal dominant hereditary gingival fibromatosis, GINGF3, maps to chromosome 2p22.3-p23.3[J]. Clin Genet, 2005, 68(3): 239-244. |
9 | Zhu YF, Zhang WX, Huo ZH, et al. A novel locus for maternally inherited human gingival fibromatosis at chromosome 11p15[J]. Hum Genet, 2007, 121(1): 113-123. |
10 | Bayram Y, White JJ, Elcioglu N, et al. REST final-exon-truncating mutations cause hereditary gingival fibromatosis[J]. Am J Hum Genet, 2017, 101(1): 149-156. |
11 | Hart TC, Zhang YZ, Gorry MC, et al. A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1[J]. Am J Hum Genet, 2002, 70(4): 943-954. |
12 | Huang WYC, Alvarez S, Kondo Y, et al. A molecular assembly phase transition and kinetic proofrea-ding modulate Ras activation by SOS[J]. Science, 2019, 363(6431): 1098-1103. |
13 | Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins[J]. Cell, 2007, 129(5): 865-877. |
14 | McCormick F. K-Ras protein as a drug target[J]. J Mol Med (Berl), 2016, 94(3): 253-258. |
15 | Krygowska AA, Castellano E. PI3K: a crucial piece in the RAS signaling puzzle[J]. Cold Spring Harb Perspect Med, 2018, 8(6): a031450. |
16 | Baltanás FC, Zarich N, Rojas-Cabañeros JM, et al. SOS GEFs in health and disease[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188445. |
17 | Sini P, Cannas A, Koleske AJ, et al. Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation[J]. Nat Cell Biol, 2004, 6(3): 268-274. |
18 | Han SK, Kong J, Kim S, et al. Exomic and transcriptomic alterations of hereditary gingival fibromatosis[J]. Oral Dis, 2019, 25(5): 1374-1383. |
19 | Muñoz-Félix JM, Martínez-Salgado C. Dissecting the involvement of ras GTPases in kidney fibrosis[J]. Genes, 2021, 12(6): 800. |
20 | Jang SI, Lee EJ, Hart PS, et al. Germ line gain of function with SOS1 mutation in hereditary gingival fibromatosis[J]. J Biol Chem, 2007, 282(28): 20245-20255. |
21 | Gawron K, Bereta G, Nowakowska Z, et al. Analysis of mutations in the SOS-1 gene in two Polish families with hereditary gingival fibromatosis[J]. Oral Dis, 2017, 23(7): 983-989. |
22 | Kala N, Prasad H, Babu P, et al. Son of Sevenless-1 genetic status in an Indian family with nonsyndro-mic hereditary gingival fibromatosis[J]. J Indian Soc Periodontol, 2020, 24(3): 280-283. |
23 | 贺秀芳, 许春姣, 田地, 等. 遗传性牙龈纤维瘤病一家族三代1例[J]. 华西口腔医学杂志, 2020, 38(1): 104-107. |
He XF, Xu CJ, Tian D, et al. Hereditary gingival fibromatosis: a three-generation case report[J]. West China J Stomatol, 2020, 38(1): 104-107. | |
24 | Garcia-Manteiga JM, D’Alessandro R, Meldolesi J. News about the role of the transcription factor REST in neurons: from physiology to pathology[J]. Int J Mol Sci, 2019, 21(1): 235. |
25 | Zhao YG, Zhu M, Yu YL, et al. Brain REST/NRSF is not only a silent repressor but also an active protector[J]. Mol Neurobiol, 2017, 54(1): 541-550. |
26 | Medellin B, Yang WJ, Konduri S, et al. Targeted covalent inhibition of small CTD phosphatase 1 to promote the degradation of the REST transcription factor in human cells[J]. J Med Chem, 2022, 65(1): 507-519. |
27 | Roman-Malo L, Bullon B, de Miguel M, et al. Fibroblasts collagen production and histological alte-rations in hereditary gingival fibromatosis[J]. Disea-ses, 2019, 7(2): 39. |
28 | Martelli-Junior H, Cotrim P, Graner E, et al. Effect of transforming growth factor-beta1, interleukin-6, and interferon-gamma on the expression of type Ⅰcollagen, heat shock protein 47, matrix metalloproteinase (MMP)-1 and MMP-2 by fibroblasts from normal gingiva and hereditary gingival fibromatosis[J]. J Periodontol, 2003, 74(3): 296-306. |
29 | Gawron K, Ochała-Kłos A, Nowakowska Z, et al. TIMP-1 association with collagen type Ⅰ overproduction in hereditary gingival fibromatosis[J]. Oral Dis, 2018, 24(8): 1581-1590. |
30 | Kong QR, Xie BT, Zhang H, et al. RE1-silencing transcription factor (REST) is required for nuclear reprogramming by inhibiting transforming growth factor β signaling pathway[J]. J Biol Chem, 2016, 291(53): 27334-27342. |
31 | Lin TP, Chang YT, Lee SY, et al. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling[J]. Oncotarget, 2016, 7(18): 26137-26151. |
32 | Wu J, Chen DN, Huang H, et al. A novel gene ZNF862 causes hereditary gingival fibromatosis[J]. Elife, 2022, 11: e66646. |
33 | Schwartz CJ, Dolgalev I, Yoon E, et al. Microglandular adenosis is an advanced precursor breast lesion with evidence of molecular progression to matrix-producing metaplastic carcinoma[J]. Hum Pathol, 2019, 85: 65-71. |
34 | Peng C, Cardenas A, Rifas-Shiman SL, et al. Epi-genome-wide association study of total serum immunoglobulin E in children: a life course approach[J]. Clin Epigenetics, 2018, 10: 55. |
35 | Hwang J, Kim YL, Kang S, et al. Genetic analysis of hereditary gingival fibromatosis using whole exome sequencing and bioinformatics[J]. Oral Dis, 2017, 23(1): 102-109. |
36 | Kameli R, Ashrafi MR, Ehya F, et al. Leukoence-phalopathy in RIN2 syndrome: novel mutation and expansion of clinical spectrum[J]. Eur J Med Genet, 2020, 63(1): 103629. |
37 | Kawashima Y, Nishimura R, Utsunomiya A, et al. Leprechaunism (Donohue syndrome): a case bea-ring novel compound heterozygous mutations in the insulin receptor gene[J]. Endocr J, 2013, 60(1): 107-112. |
38 | Xin BZ, Puffenberger EG, Turben S, et al. Homozygous frameshift mutation in TMCO1 causes a syndrome with craniofacial dysmorphism, skeletal ano-malies, and mental retardation[J]. Proc Natl Acad Sci U S A, 2010, 107(1): 258-263. |
39 | 苗芬, 姚敏, 郑红. 遗传性牙龈纤维瘤发病机制的实验研究[J]. 实用医学杂志, 2019, 35(3): 388-391. |
Miao F, Yao M, Zheng H. The study of pathogenic mechanism in hereditary gingival fibromatosis[J]. J Pract Med, 2019, 35(3): 388-391. | |
40 |
Xie CQ, Feng H, Zhong L, et al. Proliferative ability and accumulation of cancer stem cells in oral submucous fibrosis epithelium[J]. Oral Dis, 2020. doi:10.1111/odi.13347 .
doi: 10.1111/odi.13347 |
41 | Xiong Y, Liu LQ, Qiu Y, et al. microRNA-29a inhi-bits growth, migration and invasion of melanoma A375 cells in vitro by directly targeting BMI1[J]. Cell Physiol Biochem, 2018, 50(1): 385-397. |
42 | 高炜炜, 杨静, 朱于非, 等. 外显子组测序筛查遗传性牙龈纤维瘤的致病基因[J]. 上海交通大学学报(医学版), 2014, 34(12): 1721-1726. |
Gao WW, Yang J, Zhu YF, et al. Screening pathogenic genes of hereditary gingival fibromatosis by exome sequencing[J]. J Shanghai Jiao Tong Univ (Med Sci), 2014, 34(12): 1721-1726. |