Int J Stomatol ›› 2023, Vol. 50 ›› Issue (2): 217-223.doi: 10.7518/gjkq.2023038

• Reviews • Previous Articles     Next Articles

Research progress on the genes related of the hereditary gingival fibromatosis

Qiao Yuxuan1(),Li Ying1,2()   

  1. 1.Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, China
    2.Dept. of Prosthodontics, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2022-07-27 Revised:2022-10-04 Online:2023-03-01 Published:2023-03-14
  • Contact: Ying Li E-mail:2356230680@qq.com;Oliver1104@163.com

Abstract:

Hereditary gingival fibromatosis (HGF) is a rare oral genetic disease characterized by slow progressive gingival proliferation, which seriously affects chewing, speech, aesthetics and mental health. In recent years, with the deve-lopment of molecular biology and continuous progress of sequencing technology, the study of hereditary gingival fibromatosis has entered the genetic level. At present, the pathogenic mechanism of hereditary gingival fibromatosis is notentirelyclear. Meanwhile, there are a lot of results in the exploration of the pathogenic genes of hereditary gingival fibromatosis at home and abroad, but there is a lack of collation and review of relevant aspects. This paper reviews the research status of chromosomal variation regions, pathogenic genes and candidate genes in hereditary.

Key words: hereditary gingival fibromatosis, chromosome, gene, research progress, genetic disease

CLC Number: 

  • R 34

TrendMD: 

Tab 1

Pathogenic genes associated with SHGF"

疾病名称遗传特性#致病基因染色体定位OMIM编号
HTC1ARABCA517q24.2-q24.3135400
HTC2XLDXq27.1307150
CavipmrAREMC11p36.13616875
DRS2ADDVL11p36.33616331
Ramon综合征AR266270
HFSARANTXR24q21.21228600
Cowden综合征ADPTEN10q23.31158350
Cross综合征AR257800
MANSAARMAN2B119p13.13248500
CSTLOADHRAS11p15.5218040
黏脂贮积症Ⅱ型ARIDUA4p16.3607014
遗传性釉质发育不全ⅢAADFAM83H8q24.3130900
遗传性釉质发育不全ⅠBADENAM4q13.3104500
SHFM1ADDLX57q21.3183600
多诺霍综合征ARINSR19p13.2147670
CFSMRARTMCO11q24.1213980
DRS3ADDVL33q27.1601368
AGUARAGA4q34.3208400
FTHSARSH3PXD2B5q35.1249420
EDSDERMSARADAMTS25q35.3225410
纤溶酶原缺乏Ⅰ型ARPLG6q26217090
ZLS1ADKCNH11q32.2135500
ZLS2ARATP6V1B28p21.3616455
RNSARFAM20C7p22.3259775
RRS1ARROR29q22.31268310
BBDSADFGFR210q26.13614592
CANTU综合征ADABCC912p12.1239850
MONAARMMP216q12.2259600

"

1 段小红. 口腔罕见病名录(第一版)[J]. 中华口腔医学杂志, 2020, 55(7): 494-500.
Duan XH. The first edition of oral rare diseases list[J]. Chin J Stomatol, 2020, 55(7): 494-500.
2 Gawron K, Łazarz-Bartyzel K, Potempa J, et al. Gingival fibromatosis: clinical, molecular and therapeutic issues[J]. Orphanet J Rare Dis, 2016, 11: 9.
3 Majumder P, Nair V, Mukherjee M, et al. The autosomal recessive inheritance of hereditary gingival fibromatosis[J]. Case Rep Dent, 2013, 2013: 432864.
4 Costa CRR, Braz SV, de Toledo IP, et al. Syndromes with gingival fibromatosis: a systematic review[J]. Oral Dis, 2021, 27(4): 881-893.
5 Hart TC, Pallos D, Bowden DW, et al. Genetic lin-kage of hereditary gingival fibromatosis to chromosome 2p21[J]. Am J Hum Genet, 1998, 62(4): 876-883.
6 Xiao S, Wang X, Qu B, et al. Refinement of the locus for autosomal dominant hereditary gingival fibromatosis (GINGF) to a 3.8-cM region on 2p21[J]. Genomics, 2000, 68(3): 247-252.
7 Xiao S, Bu L, Zhu L, et al. A new locus for hereditary gingival fibromatosis (GINGF2) maps to 5q13-Q22[J]. Genomics, 2001, 74(2): 180-185.
8 Ye X, Shi L, Cheng Y, et al. A novel locus for autosomal dominant hereditary gingival fibromatosis, GINGF3, maps to chromosome 2p22.3-p23.3[J]. Clin Genet, 2005, 68(3): 239-244.
9 Zhu YF, Zhang WX, Huo ZH, et al. A novel locus for maternally inherited human gingival fibromatosis at chromosome 11p15[J]. Hum Genet, 2007, 121(1): 113-123.
10 Bayram Y, White JJ, Elcioglu N, et al. REST final-exon-truncating mutations cause hereditary gingival fibromatosis[J]. Am J Hum Genet, 2017, 101(1): 149-156.
11 Hart TC, Zhang YZ, Gorry MC, et al. A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1[J]. Am J Hum Genet, 2002, 70(4): 943-954.
12 Huang WYC, Alvarez S, Kondo Y, et al. A molecular assembly phase transition and kinetic proofrea-ding modulate Ras activation by SOS[J]. Science, 2019, 363(6431): 1098-1103.
13 Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins[J]. Cell, 2007, 129(5): 865-877.
14 McCormick F. K-Ras protein as a drug target[J]. J Mol Med (Berl), 2016, 94(3): 253-258.
15 Krygowska AA, Castellano E. PI3K: a crucial piece in the RAS signaling puzzle[J]. Cold Spring Harb Perspect Med, 2018, 8(6): a031450.
16 Baltanás FC, Zarich N, Rojas-Cabañeros JM, et al. SOS GEFs in health and disease[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(2): 188445.
17 Sini P, Cannas A, Koleske AJ, et al. Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation[J]. Nat Cell Biol, 2004, 6(3): 268-274.
18 Han SK, Kong J, Kim S, et al. Exomic and transcriptomic alterations of hereditary gingival fibromatosis[J]. Oral Dis, 2019, 25(5): 1374-1383.
19 Muñoz-Félix JM, Martínez-Salgado C. Dissecting the involvement of ras GTPases in kidney fibrosis[J]. Genes, 2021, 12(6): 800.
20 Jang SI, Lee EJ, Hart PS, et al. Germ line gain of function with SOS1 mutation in hereditary gingival fibromatosis[J]. J Biol Chem, 2007, 282(28): 20245-20255.
21 Gawron K, Bereta G, Nowakowska Z, et al. Analysis of mutations in the SOS-1 gene in two Polish families with hereditary gingival fibromatosis[J]. Oral Dis, 2017, 23(7): 983-989.
22 Kala N, Prasad H, Babu P, et al. Son of Sevenless-1 genetic status in an Indian family with nonsyndro-mic hereditary gingival fibromatosis[J]. J Indian Soc Periodontol, 2020, 24(3): 280-283.
23 贺秀芳, 许春姣, 田地, 等. 遗传性牙龈纤维瘤病一家族三代1例[J]. 华西口腔医学杂志, 2020, 38(1): 104-107.
He XF, Xu CJ, Tian D, et al. Hereditary gingival fibromatosis: a three-generation case report[J]. West China J Stomatol, 2020, 38(1): 104-107.
24 Garcia-Manteiga JM, D’Alessandro R, Meldolesi J. News about the role of the transcription factor REST in neurons: from physiology to pathology[J]. Int J Mol Sci, 2019, 21(1): 235.
25 Zhao YG, Zhu M, Yu YL, et al. Brain REST/NRSF is not only a silent repressor but also an active protector[J]. Mol Neurobiol, 2017, 54(1): 541-550.
26 Medellin B, Yang WJ, Konduri S, et al. Targeted covalent inhibition of small CTD phosphatase 1 to promote the degradation of the REST transcription factor in human cells[J]. J Med Chem, 2022, 65(1): 507-519.
27 Roman-Malo L, Bullon B, de Miguel M, et al. Fibroblasts collagen production and histological alte-rations in hereditary gingival fibromatosis[J]. Disea-ses, 2019, 7(2): 39.
28 Martelli-Junior H, Cotrim P, Graner E, et al. Effect of transforming growth factor-beta1, interleukin-6, and interferon-gamma on the expression of type Ⅰcollagen, heat shock protein 47, matrix metalloproteinase (MMP)-1 and MMP-2 by fibroblasts from normal gingiva and hereditary gingival fibromatosis[J]. J Periodontol, 2003, 74(3): 296-306.
29 Gawron K, Ochała-Kłos A, Nowakowska Z, et al. TIMP-1 association with collagen type Ⅰ overproduction in hereditary gingival fibromatosis[J]. Oral Dis, 2018, 24(8): 1581-1590.
30 Kong QR, Xie BT, Zhang H, et al. RE1-silencing transcription factor (REST) is required for nuclear reprogramming by inhibiting transforming growth factor β signaling pathway[J]. J Biol Chem, 2016, 291(53): 27334-27342.
31 Lin TP, Chang YT, Lee SY, et al. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling[J]. Oncotarget, 2016, 7(18): 26137-26151.
32 Wu J, Chen DN, Huang H, et al. A novel gene ZNF862 causes hereditary gingival fibromatosis[J]. Elife, 2022, 11: e66646.
33 Schwartz CJ, Dolgalev I, Yoon E, et al. Microglandular adenosis is an advanced precursor breast lesion with evidence of molecular progression to matrix-producing metaplastic carcinoma[J]. Hum Pathol, 2019, 85: 65-71.
34 Peng C, Cardenas A, Rifas-Shiman SL, et al. Epi-genome-wide association study of total serum immunoglobulin E in children: a life course approach[J]. Clin Epigenetics, 2018, 10: 55.
35 Hwang J, Kim YL, Kang S, et al. Genetic analysis of hereditary gingival fibromatosis using whole exome sequencing and bioinformatics[J]. Oral Dis, 2017, 23(1): 102-109.
36 Kameli R, Ashrafi MR, Ehya F, et al. Leukoence-phalopathy in RIN2 syndrome: novel mutation and expansion of clinical spectrum[J]. Eur J Med Genet, 2020, 63(1): 103629.
37 Kawashima Y, Nishimura R, Utsunomiya A, et al. Leprechaunism (Donohue syndrome): a case bea-ring novel compound heterozygous mutations in the insulin receptor gene[J]. Endocr J, 2013, 60(1): 107-112.
38 Xin BZ, Puffenberger EG, Turben S, et al. Homozygous frameshift mutation in TMCO1 causes a syndrome with craniofacial dysmorphism, skeletal ano-malies, and mental retardation[J]. Proc Natl Acad Sci U S A, 2010, 107(1): 258-263.
39 苗芬, 姚敏, 郑红. 遗传性牙龈纤维瘤发病机制的实验研究[J]. 实用医学杂志, 2019, 35(3): 388-391.
Miao F, Yao M, Zheng H. The study of pathogenic mechanism in hereditary gingival fibromatosis[J]. J Pract Med, 2019, 35(3): 388-391.
40 Xie CQ, Feng H, Zhong L, et al. Proliferative ability and accumulation of cancer stem cells in oral submucous fibrosis epithelium[J]. Oral Dis, 2020. doi:10.1111/odi.13347 .
doi: 10.1111/odi.13347
41 Xiong Y, Liu LQ, Qiu Y, et al. microRNA-29a inhi-bits growth, migration and invasion of melanoma A375 cells in vitro by directly targeting BMI1[J]. Cell Physiol Biochem, 2018, 50(1): 385-397.
42 高炜炜, 杨静, 朱于非, 等. 外显子组测序筛查遗传性牙龈纤维瘤的致病基因[J]. 上海交通大学学报(医学版), 2014, 34(12): 1721-1726.
Gao WW, Yang J, Zhu YF, et al. Screening pathogenic genes of hereditary gingival fibromatosis by exome sequencing[J]. J Shanghai Jiao Tong Univ (Med Sci), 2014, 34(12): 1721-1726.
[1] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[2] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[3] Xia Weiyao,Jia Zhonglin. Research progress on the relationship between vitamin and oral clefts [J]. Int J Stomatol, 2023, 50(6): 632-638.
[4] Hu Jia,Wang Xiuqing,Lu Guoying,Huang Xiaojing.. Regenerative endodontic procedures for permanent tooth with immature apices in adult patients [J]. Int J Stomatol, 2023, 50(6): 686-695.
[5] Gong Meiling,Cheng Xingqun,Wu Hongkun.. Research progress on the correlation between Parkinson’s disease and periodontitis [J]. Int J Stomatol, 2023, 50(5): 587-593.
[6] Wang Jiaxi,Mingyue Lü,Yuan Quan. Research progress on sticky bone in oral tissue regeneration [J]. Int J Stomatol, 2023, 50(5): 594-602.
[7] Wu Sijia,Shu Chang,Wang Yang,Wang Yuan,Deng Shuli,Wang Huiming.. Effect and research progress on root canal infection management of regenerative endodontic procedure in immature permanent teeth [J]. Int J Stomatol, 2023, 50(4): 388-394.
[8] Wang Chunyi,Li Jingtao.. A case of rare mandible and lower lip duplication and literature review [J]. Int J Stomatol, 2023, 50(4): 452-456.
[9] Fan Lin,Sun Jiang.. Application of microneedles in stomatology [J]. Int J Stomatol, 2023, 50(4): 472-478.
[10] Xia Weiyao,Luo Yankun,Jia Zhonglin. Review of the precise diagnosis and genetic etiology of Pierre Robin sequence [J]. Int J Stomatol, 2023, 50(3): 287-292.
[11] Xu Yanxue,Fu Li.. Research progress on functionally graded membranes for guided bone regeneration [J]. Int J Stomatol, 2023, 50(3): 353-358.
[12] Wang Jingyan,Qin Man,Wang Xin.. Research progress on the clinical characteristics of Axenfeld-Rieger syndrome and the pathogenic mechanisms of paired-like homeodomain transcription factor 2 mutations [J]. Int J Stomatol, 2023, 50(2): 224-229.
[13] Yang Mengyao,Gao Xianling,Deng Shuli. Application of electrospun nanofibers in periodontal regeneration [J]. Int J Stomatol, 2023, 50(1): 10-18.
[14] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[15] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .