Inter J Stomatol ›› 2019, Vol. 46 ›› Issue (1): 30-36.doi: 10.7518/gjkq.2019.01.006

• Reviews • Previous Articles     Next Articles

Advancements in receptor activity-modifying protein-1 for osteogenesis

Qin Zhang,Ping Gong()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantation, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-05-24 Revised:2018-07-19 Online:2019-01-01 Published:2019-01-11
  • Contact: Ping Gong E-mail:dentistgong@hotmail.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81571008);This study was supported by National Natural Science Foundation of China(81701007);Sichuan Science and Technology Program(2018RZ0087);the Fundamental Research Funds for the Central Universities(2017SCU-12056);the Fundamental Research Funds for the Central Universities(2018SCUH0006);Project Funded by China Postdoctoral Science Foundation(2018M-631091);the Youth Science Foundation of West China Hospital of Stomatology of Sichuan University(2016-11)

Abstract:

Under physiological conditions, the dynamic balance between bone resorption and bone formation is necessary to maintain bone tissue function. However, whether we can further accelerate or improve osteogenesis process during bone wound healing has been widely explored. Receptor activity-modifying protein-1 (RAMP1) has been extensively investigated because of its extensive biological activities, especially its effects on bone fracture repair. RAMP1 is commonly found in bone tissues and can interact with G-protein coupled receptors to modify their activities. RAMP1 also has a broader role in regulating receptor trafficking and signaling, affecting the biological characteristics of osteoblasts, such as proliferation, migration, and differentiation. Thus, this review summarizes recent studies about the effects of RAMP1 on osteogenesis.

Key words: receptor activity-modifying protein-1, calcitonin gene-related peptide, osteogenesis, G-protein coupled receptor, calcitonin receptor-like receptor

CLC Number: 

  • Q51

TrendMD: 

Tab 1

Summary of the receptors that RAMPs have been involved in"

受体名称 受体主要分子组成
CGRP受体 CLR+RAMP1
AM1受体 CLR+RAMP2/3
AM2受体 CLR+RAMP1/2/3
AMY受体 CTR+RAMP1/2/3
VPAC受体 VPAC受体+RAMP1/2/3
PTH1受体 PTH1受体+RAMP2
PTH2受体 PTH2受体+RAMP3
CaSR CaSR+RAMP1/2/3

Fig 1

RAMP1 modulation of CGRP-mediated activities in osteogenesis"

[1] Wang LP, Shi XY, Zhao R , et al. Calcitonin-gene-related peptide stimulates stromal cell osteogenic differentiation and inhibits RANKL induced NF-kappaB activation, osteoclastogenesis and bone re-sorption[J]. Bone, 2010,46(5):1369-1379.
doi: 10.1016/j.bone.2009.11.029 pmid: 2854244
[2] Cooper RR . Nerves in cortical bone[J]. Science, 1968,160(3825):327-328.
doi: 10.1126/science.160.3825.327
[3] Bjurholm A, Kreicbergs A, Brodin E , et al. Subs-tance P- and CGRP-immunoreactive nerves in bone[J]. Peptides, 1988,9(1):165-171.
doi: 10.1016/0196-9781(88)90023-x pmid: 2452430
[4] Bahney CS, Hu DP, Taylor AJ , et al. Stem cell-derived endochondral cartilage stimulates bone hea-ling by tissue transformation[J]. J Bone Miner Res, 2014,29(5):1269-1282.
doi: 10.1002/jbmr.2148 pmid: 24259230
[5] Zhang ZM, Dickerson IM, Russo AF . Calcitonin gene-related peptide receptor activation by receptor activity-modifying protein-1 gene transfer to vascular smooth muscle cells[J]. Endocrinology, 2006,147(4):1932-1940.
doi: 10.1210/en.2005-0918 pmid: 16373421
[6] Zhang ZM, Winborn CS, Marquez de Prado B , et al. Sensitization of calcitonin gene-related peptide re-ceptors by receptor activity-modifying protein-1 in the trigeminal ganglion[J]. J Neurosci, 2007,27(10):2693-2703.
doi: 10.1523/JNEUROSCI.4542-06.2007 pmid: 17344407
[7] Zhang YF, Xu JK, Ruan YC , et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat Med, 2016,22(10):1160-1169.
doi: 10.1038/nm.4162 pmid: 27571347
[8] Hay DL, Walker CS . CGRP and its receptors[J]. Headache, 2017,57(4):625-636.
doi: 10.1111/head.2017.57.issue-4
[9] Blixt FW, Radziwon-Balicka A, Edvinsson L , et al. Distribution of CGRP and its receptor components CLR and RAMP1 in the rat retina[J]. Exp Eye Res, 2017,161:124-131.
doi: 10.1016/j.exer.2017.06.002 pmid: 28603014
[10] Zheng LF, Wang R, Xu YZ , et al. Calcitonin gene-related peptide dynamics in rat dorsal root ganglia and spinal cord following different sciatic nerve in-juries[J]. Brain Res, 2008,1187:20-32.
doi: 10.1016/j.brainres.2007.10.044 pmid: 18035338
[11] Toth CC, Willis D, Twiss JL , et al. Locally synthe-sized calcitonin gene-related peptide has a critical role in peripheral nerve regeneration[J]. J Neuro-pathol Exp Neurol, 2009,68(3):326-337.
doi: 10.1097/NEN.0b013e31819ac71b pmid: 19225405
[12] Xiang L, Ma L, Wei N , et al. Effect of lentiviral vector overexpression α-calcitonin gene-related peptide on titanium implant osseointegration in α-CGRP-de-ficient mice[J]. Bone, 2017,94:135-140.
doi: 10.1016/j.bone.2015.08.009
[13] Hilairet S, Foord SM, Marshall FH , et al. Protein-protein interaction and not glycosylation determines the binding selectivity of heterodimers between the calcitonin receptor-like receptor and the receptor activity-modifying proteins[J]. J Biol Chem, 2001,276(31):29575-29581.
doi: 10.1074/jbc.M102722200 pmid: 11387328
[14] Hay DL, Poyner DR, Smith DM . Desensitisation of adrenomedullin and CGRP receptors[J]. Regul Pept, 2003,112(1/2/3):139-145.
doi: 10.1016/S0167-0115(03)00032-6 pmid: 12667635
[15] Udawela M, Hay DL, Sexton PM . The receptor activity modifying protein family of G protein coupled re-ceptor accessory proteins[J]. Semin Cell Dev Biol, 2004,15(3):299-308.
doi: 10.1016/j.semcdb.2003.12.019 pmid: 15125893
[16] Qi T, Hay DL . Structure-function relationships of the N-terminus of receptor activity-modifying proteins[J]. Br J Pharmacol, 2010,159(5):1059-1068.
doi: 10.1111/j.1476-5381.2009.00541.x pmid: 20015292
[17] Booe JM, Walker CS, Barwell J , et al. Structural basis for receptor activity-modifying protein-depen-dent selective peptide recognition by a G protein-coupled receptor[J]. Mol Cell, 2015,58(6):1040-1052.
doi: 10.1016/j.molcel.2015.04.018 pmid: 4504005
[18] Hay DL, Walker CS, Gingell JJ , et al. Receptor activity-modifying proteins; multifunctional G pro-tein-coupled receptor accessory proteins[J]. Biochem Soc Trans, 2016,44(2):568-573.
doi: 10.1042/BST20150237 pmid: 27068971
[19] Klein KR, Matson BC, Caron KM . The expanding repertoire of receptor activity modifying protein (RAMP) function[J]. Crit Rev Biochem Mol Biol, 2016,51(1):65-71.
doi: 10.3109/10409238.2015.1128875
[20] Yuan J, Gilbert ER, Cline MA . The central anore-xigenic mechanism of amylin in Japanese quail (Coturnix japonica) involves pro-opiomelanocortin, calcitonin receptor, and the arcuate nucleus of the hypothalamus[J]. Comp Biochem Physiol A Mol Integr Physiol, 2017,210:28-34.
doi: 10.1016/j.cbpa.2017.05.011 pmid: 28552562
[21] Edvinsson L . The trigeminovascular pathway: role of CGRP and CGRP receptors in migraine[J]. Hea-dache, 2017,57(Suppl 2):47-55.
doi: 10.1111/head.13081 pmid: 28485848
[22] Hay DL, Garelja ML, Poyner DR , et al. Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25[J]. Br J Pharmacol, 2018,175(1):3-17.
doi: 10.1111/bph.14075 pmid: 29059473
[23] Booe JM, Warner ML, Roehrkasse AM , et al. Probing the mechanism of receptor activity-modifying protein modulation of GPCR ligand selectivity through rational design of potent adrenomedullin and calcitonin gene-related peptide antagonists[J]. Mol Pharmacol, 2018,93(4):355-367.
doi: 10.1124/mol.117.110916 pmid: 29363552
[24] Hay DL, Pioszak AA . Receptor activity-modifying proteins (RAMPs): new insights and roles[J]. Annu Rev Pharmacol Toxicol, 2016,56:469-487.
doi: 10.1146/annurev-pharmtox-010715-103120 pmid: 26514202
[25] Pawlak JB, Wetzel-Strong SE, Dunn MK , et al. Car-diovascular effects of exogenous adrenomedullin and CGRP in Ramp and Calcrl deficient mice[J]. Pepti-des, 2017,88:1-7.
doi: 10.1016/j.peptides.2016.12.002 pmid: 27940069
[26] Mayr B, Montminy M . Transcriptional regulation by the phosphorylation-dependent factor CREB[J]. Nat Rev Mol Cell Biol, 2001,2(8):599-609.
doi: 10.1038/35085068 pmid: 11483993
[27] Koga T, Matsui Y, Asagiri M , et al. NFAT and Osterix cooperatively regulate bone formation[J]. Nat Med, 2005,11(8):880-885.
doi: 10.1038/nm1270
[28] Komori T . Signaling networks in RUNX2-dependent bone development[J]. J Cell Biochem, 2011,112(3):750-755.
doi: 10.1002/jcb.22994
[29] Yoo YM, Kwag JH, Kim KH , et al. Effects of neuro-peptides and mechanical loading on bone cell resorp-tion in vitro[J]. Int J Mol Sci, 2014,15(4):5874-5883.
doi: 10.3390/ijms15045874 pmid: 4013601
[30] Liang W, Zhuo XL, Tang ZF , et al. Calcitonin gene-related peptide stimulates proliferation and osteo-genic differentiation of osteoporotic rat-derived bone mesenchymal stem cells[J]. Mol Cell Biochem, 2015,402(1/2):101-110.
doi: 10.1007/s11010-014-2318-6 pmid: 25563479
[31] Mach DB, Rogers SD, Sabino MC , et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur[J]. Neuroscience, 2002,113(1):155-166.
doi: 10.1016/S0306-4522(02)00165-3 pmid: 12123694
[32] Ballica R, Valentijn K, Khachatryan A , et al. Targeted expression of calcitonin gene-related peptide to os-teoblasts increases bone density in mice[J]. J Bone Miner Res, 1999,14(7):1067-1074.
doi: 10.1359/jbmr.1999.14.7.1067 pmid: 10404006
[33] Gangula PR, Zhao H, Supowit SC , et al. Increased blood pressure in alpha-calcitonin gene-related peptide/calcitonin gene knockout mice[J]. Hyper-tension, 2000,35(1 Pt 2):470-475.
doi: 10.1161/01.HYP.35.1.470 pmid: 10642343
[34] Huebner AK, Schinke T, Priemel M , et al. Calcitonin deficiency in mice progressively results in high bone turnover[J]. J Bone Miner Res, 2006,21(12):1924-1934.
doi: 10.1359/jbmr.060820 pmid: 17002587
[35] Li Y, Tan YH, Zhang G , et al. Effects of calcitonin gene-related peptide on the expression and activity of nitric oxide synthase during mandibular bone healing in rabbits: an experimental study[J]. J Oral Maxillofac Surg, 2009,67(2):273-279.
doi: 10.1016/j.joms.2008.06.077 pmid: 19138599
[36] Hilairet S, Bélanger C, Bertrand J , et al. Agonist-pro-moted internalization of a ternary complex between calcitonin receptor-like receptor, receptor activity-modifying protein 1 (RAMP1), and beta-arrestin[J]. J Biol Chem, 2001,276(45):42182-42190.
doi: 10.1074/jbc.m107323200 pmid: 11535606
[37] McLatchie LM, Fraser NJ, Main MJ , et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor[J]. Nature, 1998,393(6683):333-339.
[38] Márquez-Rodas I, Xavier FE, Arroyo-Villa I , et al. Increased expression in calcitonin-like receptor in-duced by aldosterone in cerebral arteries from spon-taneously hypertensive rats does not correlate with functional role of CGRP receptor[J]. Regul Pept, 2008,146(1/2/3):125-130.
doi: 10.1016/j.regpep.2007.09.001 pmid: 17904662
[39] Togari A, Arai M, Mizutani S , et al. Expression of mRNAs for neuropeptide receptors and beta-adre-nergic receptors in human osteoblasts and human osteogenic sarcoma cells[J]. Neurosci Lett, 1997,233(2/3):125-128.
doi: 10.1016/S0304-3940(97)00649-6
[40] Kawase T, Okuda K, Burns DM . Immature human osteoblastic MG63 cells predominantly express a subtype 1-like CGRP receptor that inactivates extra-cellular signal response kinase by a cAMP-depen-dent mechanism[J]. Eur J Pharmacol, 2003,470(3):125-137.
doi: 10.1016/S0014-2999(03)01763-1 pmid: 12798950
[41] Uzan B, de Vernejoul MC, Cressent M . RAMPs and CRLR expressions in osteoblastic cells after dexame-thasone treatment[J]. Biochem Biophys Res Commun, 2004,321(4):802-808.
doi: 10.1016/j.bbrc.2004.07.037
[42] Villa I, Mrak E, Rubinacci A , et al. CGRP inhibits osteoprotegerin production in human osteoblast-like cells via cAMP/PKA-dependent pathway[J]. Am J Physiol Cell Physiol, 2006,291(3):C529-C537.
doi: 10.1152/ajpcell.00354.2005
[43] Russo AF, Kuburas A, Kaiser EA , et al. A potential preclinical migraine model: CGRP-sensitized mice[J]. Mol Cell Pharmacol, 2009,1(5):264-270.
doi: 10.1186/1471-213X-8-96 pmid: 20336186
[44] Bohn KJ, Li BL, Huang XF , et al. CGRP receptor activity in mice with global expression of human receptor activity modifying protein 1[J]. Br J Phar-macol, 2017,174(12):1826-1840.
doi: 10.1111/bph.13783 pmid: 28317098
[45] Zhao ZL, Fu XB, Zhang G , et al. The influence of RAMP1 overexpression on CGRP-induced osteo-genic differentiation in MG-63 cells in vitro: an experimental study[J]. J Cell Biochem, 2013,114(2):314-322.
doi: 10.1002/jcb.24375 pmid: 22949393
[46] 蒋章, 张慧宇, 张纲 , 等. RAMP1-siRNA对CGRP促MG-63细胞增殖作用影响的实验研究[J]. 实用口腔医学杂志, 2015,31(3):339-342.
Jiang Z, Zhang HY, Zhang G , et al. Experimental study on the effect of RAMP1-siRNA on CGRP-in-duced proliferation of MG-63 cells[J]. J Pract Stomatol, 2015,31(3):339-342.
[47] Kurashige C, Hosono K, Matsuda H , et al. Roles of receptor activity-modifying protein 1 in angiogenesis and lymphangiogenesis during skin wound healing in mice[J]. FASEB J, 2014,28(3):1237-1247.
doi: 10.1096/fj.13-238998 pmid: 24308973
[48] Mishima T, Ito Y, Nishizawa N , et al. RAMP1 signa-ling improves lymphedema and promotes lymphan-giogenesis in mice[J]. J Surg Res, 2017,219:50-60.
doi: 10.1016/j.jss.2017.05.124 pmid: 29078910
[49] Erdling A, Sheykhzade M, Edvinsson L . Differential inhibitory response to telcagepant on αCGRP in-duced vasorelaxation and intracellular Ca 2+ levels in the perfused and non-perfused isolated rat middle cerebral artery [J]. J Headache Pain, 2017,18(1):61.
doi: 10.1186/s10194-017-0768-4
[50] Kawashima-Takeda N, Ito Y, Nishizawa N , et al. RAMP1 suppresses mucosal injury from dextran sodium sulfate-induced colitis in mice[J]. J Gastroen-terol Hepatol, 2017,32(4):809-818.
doi: 10.1111/jgh.13505 pmid: 27513455
[51] Umeda Y, Takamiya M, Yoshizaki H , et al. Inhibition of mitogen-stimulated T lymphocyte proliferation by calcitonin gene-related peptide[J]. Biochem Biophys Res Commun, 1988,154(1):227-235.
doi: 10.1016/0006-291X(88)90674-2 pmid: 2840066
[52] Wang F, Millet I, Bottomly K , et al. Calcitonin gene-related peptide inhibits interleukin 2 production by murine T lymphocytes[J]. J Biol Chem, 1992,267(29):21052-21057.
pmid: 1383217
[53] Asahina A, Hosoi J, Murphy GF , et al. Calcitonin gene-related peptide modulates Langerhans cell antigen-presenting function[J]. Proc Assoc Am Physicians, 1995,107(2):242-244.
[54] Cheng L, Khan M, Mudge AW . Calcitonin gene-related peptide promotes Schwann cell prolifera-tion[J]. J Cell Biol, 1995,129(3):789-796.
doi: 10.1083/jcb.129.3.789 pmid: 7730412
[55] Ichinose M, Sawada M . Enhancement of phagocy-tosis by calcitonin gene-related peptide (CGRP) in cultured mouse peritoneal macrophages[J]. Peptides, 1996,17(8):1405-1414.
doi: 10.1016/S0196-9781(96)00198-2 pmid: 8971938
[56] Vignery A, McCarthy TL . The neuropeptide calci-tonin gene-related peptide stimulates insulin-like growth factor Ⅰ production by primary fetal rat osteo-blasts[J]. Bone, 1996,18(4):331-335.
doi: 10.1016/8756-3282(96)00017-8 pmid: 8726390
[57] He Y, Ding G, Wang X , et al. Calcitonin gene-related peptide in Langerhans cells in psoriatic plaque le-sions[J]. Chin Med J, 2000,113(8):747-751.
doi: 10.3748/wjg.v6.i5.747 pmid: 11776062
[58] Li XQ, Verge VM, Johnston JM , et al. CGRP pe-ptide and regenerating sensory axons[J]. J Neuropa-thol Exp Neurol, 2004,63(10):1092-1103.
doi: 10.1093/jnen/63.10.1092 pmid: 15535136
[59] 王钊, 金丹, 陀泳华 , 等. 降钙素基因相关肽促进大鼠BMSCs迁移及VEGF的表达[J]. 中国修复重建外科杂志, 2011,25(11):1371-1376.
Wang Z, Jin D, Tuo YH , et al. Calcitonin gene-related peptide promoting migration of rat bone marrow mesenchymal stem cells and stimulating expression of vascular endothelial growth factor[J]. Chin J Reparat Reconstruct Surg, 2011,25(11):1371-1376.
[60] Li WW, Guo TZ, Shi XY , et al. Neuropeptide re-gulation of adaptive immunity in the tibia fracture model of complex regional pain syndrome[J]. J Neuroinflammation, 2018,15(1):105.
doi: 10.1186/s12974-018-1145-1 pmid: 29642930
[61] Héroux M, Hogue M, Lemieux S , et al. Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1[J]. J Biol Chem, 2007,282(43):31610-31620.
doi: 10.1074/jbc.M701790200 pmid: 17785463
[62] Walker CS, Eftekhari S, Bower RL , et al. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor[J]. Ann Clin Transl Neurol, 2015,2(6):595-608.
doi: 10.1002/acn3.197
[63] Walker CS, Raddant AC, Woolley MJ , et al. CGRP receptor antagonist activity of olcegepant depends on the signalling pathway measured[J]. Cephalalgia, 2018,38(3):437-451.
doi: 10.1177/0333102417691762 pmid: 28165287
[64] Bühlmann N, Leuthäuser K, Muff R , et al. A recep-tor activity modifying protein (RAMP) 2-dependent adrenomedullin receptor is a calcitonin gene-related peptide receptor when coexpressed with human RAMP1[J]. Endocrinology, 1999,140(6):2883-2890.
doi: 10.1210/endo.140.6.6783 pmid: 10342881
[65] Pondel MD, Mould R . Cloning and transcriptional analysis of the mouse receptor activity modifying protein-1 gene promoter[J]. BMC Mol Biol, 2005,6:7.
doi: 10.1186/1471-2199-6-7 pmid: 1079840
[66] Kadmiel M, Fritz-Six KL, Caron KM . Understanding RAMPs through genetically engineered mouse models[J]. Adv Exp Med Biol, 2012,744:49-60.
doi: 10.1007/978-1-4614-2364-5
[67] Edvinsson L, Warfvinge K . Recognizing the role of CGRP and CGRP receptors in migraine and its treat-ment[J]. Cephalalgia, 2017. doi: 10.1177/0333102417736900.[Epub ahead of print].
doi: 10.1177/0333102417736900 pmid: 29020807
[68] Sexton PM, Poyner DR, Simms J , et al. Modulating receptor function through RAMPs: can they represent drug targets in themselves[J]. Drug Discov Today, 2009,14(7/8):413-419.
doi: 10.1016/j.drudis.2008.12.009 pmid: 19150656
[69] Shindo T, Tanaka M, Kamiyoshi A , et al. Regulation of cardiovascular development and homeostasis by the adrenomedullin-RAMP system[J]. Peptides, 2018. doi: 10.1016/j.peptides.2018.04.004.[Epub ahead of print].
doi: 10.1016/j.peptides.2018.04.004 pmid: 29689347
[1] Chen Ye, Zhou Feng, Wu Qionghui, Che Huiling, Li Jiaxuan, Shen Jiaqi, Luo En. Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms [J]. Int J Stomatol, 2021, 48(1): 58-63.
[2] Mei Hongxiang,Zhang Yidan,Zhang Chenghao,Liu Enyan,Chen Hao,Zhao Zhihe,Liao Wen. Effect of epigallocatechin-3-gallate on stem cell proliferation and osteogenic differentiation [J]. Int J Stomatol, 2019, 46(4): 431-436.
[3] Tingting Li,Yufeng Zhang,Ruoxi Wang,Zhiqing Huang,Lü Xie,Yifan Xue,Yulan Wang. Mechanism and application of osteogenesis induced by graphene and its derivatives modified composite materials [J]. Inter J Stomatol, 2018, 45(6): 673-677.
[4] Lin Xiang,Huilu Chen,Ying Yuan,Qin Zhang,Na Xin,Ping. Gong. Research progress on calcitonin gene-related peptide on peripheral nerve, vascular regeneration and osseointegra-tion around implants [J]. Inter J Stomatol, 2018, 45(5): 509-515.
[5] Zhang Jiankang, Wei Junjun, Tang Zhaolong, Yu Yunbo, Jing Wei. Regulation of Wnt and Notch signaling pathways in the osteogenic differentiation of bone marrow-derived mesen-chymal stem cells from aged individuals [J]. Inter J Stomatol, 2017, 44(4): 459-465.
[6] Hou Liwen, Jiao Ting, Xie Ming. Relationship between vascular endothelial growth factor and tooth occurrence development [J]. Inter J Stomatol, 2016, 43(5): 605-609.
[7] Wu Dong, Bao Guanghui. Extracellular signal-regulated kinase 1/2 signal pathway regulates the osteogenic differentiation of periodontal ligament cells [J]. Inter J Stomatol, 2016, 43(3): 268-272.
[8] Liu Yi, Chen Jianzhi.. Bone osteoinduction mechanism of Panax notoginseng saponins [J]. Inter J Stomatol, 2015, 42(1): 75-78.
[9] Guo Jing, Gan Kang, Liu Hong.. Polyetheretherketone composite material and its surface-modified osteogenic efficiency [J]. Inter J Stomatol, 2014, 41(4): 436-439.
[10] Luo Qixian, Liu Changgeng. Distraction osteogenesis of periodontal ligament and dentoalveolar bone acceleration in orthodontic tooth movement [J]. Inter J Stomatol, 2014, 41(3): 309-313.
[11] Zhao Jinglei, Jiang Lingyong, Fang Bing.. Role of forkhead box O1 in bone remodeling [J]. Inter J Stomatol, 2014, 41(2): 245-249.
[12] Huang Wu, Zeng Rongsheng.
Research progress on ultrasound applied to distraction osteogenesis
[J]. Inter J Stomatol, 2013, 40(2): 188-191.
[13] Wang Jinjuan, Chen Jun. . Complications and preventation of distraction osteogenesis in oral and maxillofacial surgery [J]. Inter J Stomatol, 2012, 39(6): 818-823.
[14] Zhao Lili1, Sun Hui1, Wang Yuanyin1, Wang Liecheng2.. The relationship between trigeminal neuralgia and P2Y receptors [J]. Inter J Stomatol, 2012, 39(3): 336-338.
[15] Zhang Xiaodan, Hu Danqing, Ping Feiyun.. Alveolar distraction osteogenesis vs. vertical guided bone regeneration for the correction of vertical bone deficiency [J]. Inter J Stomatol, 2012, 39(2): 190-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .