Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (6): 673-677.doi: 10.7518/gjkq.2018.06.009

• Materials • Previous Articles     Next Articles

Mechanism and application of osteogenesis induced by graphene and its derivatives modified composite materials

Tingting Li,Yufeng Zhang(),Ruoxi Wang,Zhiqing Huang,Lü Xie,Yifan Xue,Yulan Wang   

  1. State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatolgy, Wuhan University, Wuhan 430079, China
  • Received:2017-11-02 Revised:2018-05-23 Online:2018-11-01 Published:2018-11-15
  • Contact: Yufeng Zhang E-mail:zyf@whu.edu.cn
  • Supported by:
    This study was supported by Fundamental Research Funds for the Central Universities(2042017kf0207);The Special Fund for Technical Innovation of Hubei Province(2017AHB046)

Abstract:

For a long time, autogenous bone graft is widely used in clinic and was verified to be effective in treating bone defects, but this technique is not perfect for the difficulty in healing of the donate site, immune rejection and infection. Bone tissue engineering approaches aims to aid the regeneration of bone tissues by filling the bone defects with different scaffolds which is able to induce the osteogenic differentiation of bone marrow stem cells. It is reported in former researches that graphene coating can significantly enhance the biocompatibility, cell adhesion and differentiation of scaffolds. In this review, we focused on the application of scaffolds modified with graphene and its derivatives to promote osteogenic differentiation published in recent years to providing new ideas for bone tissue regeneration.

Key words: graphene, grapheme derivatives, osteogenic differentiation, osteogenesis

CLC Number: 

  • R687.3 +4

TrendMD: 
[1] Novoselov KS, Geim AK, Morozov SV , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669.
doi: 10.1126/science.1102896
[2] Lee CG, Wei XD, Kysar JW , et al. Measurement of the elastic properties and intrinsic strength of mono-layer graphene[J]. Science, 2008,321(5887):385-388.
doi: 10.1126/science.1157996 pmid: 18635798
[3] Balandin AA, Ghosh S, Bao WZ , et al. Superior the- rmal conductivity of single-layer graphene[J]. Nano Lett, 2008,8(3):902-907.
doi: 10.1021/nl0731872 pmid: 18284217
[4] Jastrzębska AM, Kurtycz P, Olszyna AR . Recent advances in graphene family materials toxicity inves-tigations[J]. J Nanopart Res, 2012,14(12):1320.
doi: 10.1007/s11051-012-1320-8 pmid: 23239936
[5] Schinwald A, Murphy F, Askounis A , et al. Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung[J]. Nanotoxicology, 2014,8(8):824-832.
doi: 10.3109/17435390.2013.831502 pmid: 23924429
[6] Pan LL, Pei XB, He R , et al. Multiwall carbon nano-tubes/polycaprolactone composites for bone tissue engineering application[J]. Colloids Surf B Bioin-terfaces, 2012,93:226-234.
doi: 10.1016/j.colsurfb.2012.01.011 pmid: 22305638
[7] La WG, Park S, Yoon HH , et al. Delivery of a thera-peutic protein for bone regeneration from a substrate coated with graphene oxide[J]. Small, 2013,9(23):4051-4060.
doi: 10.1002/smll.201300571 pmid: 23839958
[8] Jung HS, Lee T, Kwon IK , et al. Surface modifica-tion of multipass caliber-rolled Ti alloy with dexa-methasone-loaded graphene for dental applications[J]. ACS Appl Mater Interfaces, 2015,7(18):9598-9607.
doi: 10.1021/acsami.5b03431 pmid: 25909563
[9] 魏丽君, 曹均凯, 李俊杰 , 等. 低聚乙二醇富马酸酯/氧化石墨烯复合水凝胶对大鼠骨髓间充质干细胞成骨分化的调控作用[J]. 解放军医学院学报, 2016,37(6):611-616, 633.
doi: 10.3969/j.issn.2095-5227.2016.06.023
Wei LJ, Cao JK, Li JJ , et al. Effects of oligo [poly (ethylene glycol) fumarate]/graphene oxide on osteo-genic differentiation of bone marrow mesenchymal stem cells in rats[J]. Acad J Chin PLA Med School, 2016,37(6):611-616, 633.
doi: 10.3969/j.issn.2095-5227.2016.06.023
[10] 齐元园 . 石墨烯聚合物复合材料在组织工程支架及药物载体中的应[D]. 兰州: 兰州大学, 2012.
Qi YY . Applications of graphene/polymer composites in tissue engineering scaffold and drug carrier[D]. Lanzhou: Lanzhou University, 2012.
[11] Wang CH, Guo ZS, Pang F , et al. Effects of graphene modification on the bioactivation of polyethylene-terephthalate-based artificial ligaments[J]. ACS Appl Mater Interfaces, 2015,7(28):15263-15276.
doi: 10.1021/acsami.5b02893 pmid: 26111253
[12] Duan S, Yang XP, Mei F , et al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials[J]. J Biomed Mater Res A, 2015,103(4):1424-1435.
doi: 10.1002/jbm.a.35283 pmid: 25046153
[13] Ramezanzadeh B, Ghasemi E, Mahdavian M , et al. Covalently-grafted graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings[J]. Carbon, 2015,93:555-573.
doi: 10.1016/j.carbon.2015.05.094
[14] 韩笑, 董玉华, 周琼 . 氧化石墨烯/聚偏氟乙烯复合涂层的机械性能与防腐性研究[J]. 涂料工业, 2016,46(5):1-6.
Han X, Dong YH, Zhou Q . Investigation of mechanical and anticorrosion properties of graphene oxide/poly-vinylidene fluoride composite coating[J]. Paint Coat Ind, 2016,46(5):1-6.
[15] Yoon HH, Bhang SH, Kim T , et al. Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell-adhesion substrate and growth factor-delivery carrier[J]. Adv Funct Mater, 2014,24(41):6455-6464.
doi: 10.1002/adfm.201400793
[16] Gu M, Liu YS, Chen T , et al. Is graphene a promising nanomaterial for promoting surface modi-fication of implants or scaffold materials in bone tissue engine-ering[J]. Tissue Eng Part B, 2014,20(5):477-491.
doi: 10.1089/ten.TEB.2013.0638 pmid: 4186769
[17] Sniadecki NJ, Desai RA, Ruiz SA , et al. Nanotechno-logy for cell-substrate interactions[J]. Ann Biomed Eng, 2006,34(1):59-74.
doi: 10.1007/s10439-005-9006-3 pmid: 16525764
[18] Kumar S, Raj S, Sarkar K , et al. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration[J]. Nanoscale, 2016,8(12):6820-6836.
doi: 10.1039/c5nr06906h pmid: 26955801
[19] Nayak TR, Andersen H, Makam VS , et al. Graphene for controlled and accelerated osteogenic differentia-tion of human mesenchymal stem cells[J]. ACS Nano, 2011,5(6):4670-4678.
doi: 10.1021/nn200500h
[20] Depan D, Misra RD . The interplay between nanos-tructured carbon-grafted chitosan scaffolds and pro-tein adsorption on the cellular response of osteob-lasts: structure-function property relationship[J]. Acta Biomater, 2013,9(4):6084-6094.
doi: 10.1016/j.actbio.2012.12.019 pmid: 23261921
[21] Jia ZJ, Shi YY, Xiong P , et al. From solution to biointerface: graphene self-assemblies of varying lateral sizes and surface properties for biofilm control and osteodifferentiation[J]. ACS Appl Mater Interfaces, 2016,8(27):17151-17165.
doi: 10.1021/acsami.6b05198 pmid: 27327408
[22] Lee WC, Lim CH, Shi H , et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide[J]. ACS Nano, 2011,5(9):7334-7341.
doi: 10.1021/nn202190c pmid: 21793541
[23] 吕成奇, 陆家瑜, 于佳 , 等. 自撑式石墨烯水凝胶诱导人脂肪干细胞成骨分化的体外研究[J]. 口腔医学, 2014,34(7):486-491.
Lü CQ, Lu JY, Yu J , et al. In vitro effects of self-sustaining graphene hydrogel film on the osteogenic differentiation of human adipose-derived stem cells[J]. Stomatology, 2014,34(7):486-491.
[24] Lee JH, Shin YC, Jin OS , et al. Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells[J]. Nanoscale, 2015,7(27):11642-11651.
doi: 10.1039/c5nr01580d pmid: 26098486
[25] Usui Y, Aoki K, Narita N , et al. Carbon nanotubes with high bone-tissue compatibility and bone-forma-tion acceleration effects[J]. Small, 2008,4(2):240-246.
doi: 10.1002/smll.200700670 pmid: 18205152
[26] Mahamid JL, Aichmayer B, Shimoni E , et al. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebra-fish fin rays[J]. Proc Natl Acad Sci USA, 2010,107(14):6316-6321.
doi: 10.1073/pnas.0914218107 pmid: 20308589
[27] Goriainov V, Cook R, Latham JM , et al. Bone and metal: an orthopaedic perspective on osseointegration of metals[J]. Acta Biomater, 2014,10(10):4043-4057.
doi: 10.1016/j.actbio.2014.06.004 pmid: 24932769
[28] 初可嘉, 刘建国, 吴迪 , 等. 成熟期成釉细胞功能的研究进展[J]. 口腔医学研究, 2013,29(8):783-785.
Chu KJ, Liu JG, Wu D , et al. Research progress on ameloblastoma function at mature stage[J]. J Oral Sci Res, 2013,29(8):783-785.
[29] Zhang YB, Petibone D, Xu Y , et al. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine[J]. Drug Metab Rev, 2014,46(2):232-246.
doi: 10.3109/03602532.2014.883406 pmid: 24506522
[30] Chang YL, Yang ST, Liu JH , et al. In vitro toxicity evaluation of graphene oxide on A549 cells[J]. Toxicol Lett, 2011,200(3):201-210.
doi: 10.1016/j.toxlet.2010.11.016 pmid: 21130147
[31] Lu CH, Zhu CL, Li J , et al. Using graphene to protect DNA from cleavage during cellular delivery[J]. Chem Commun (Camb), 2010,46(18):3116-3118.
doi: 10.1039/b926893f pmid: 20424750
[32] 沈贺, 张立明, 张智军 . 石墨烯在生物医学领域的应用[J]. 东南大学学报(医学版), 2011,30(1):218-223.
doi: 10.3969/j.issn.1671-6264.2011.01.035
Shen H, Zhang LM, Zhang ZJ . The application of graphene in the field of biomedicine[J]. J Southeast Univ (Med Sci Ed), 2011,30(1):218-223.
doi: 10.3969/j.issn.1671-6264.2011.01.035
[33] Ruiz ON, Fernando KA, Wang BJ , et al. Graphene oxide: a nonspecific enhancer of cellular growth[J]. ACS Nano, 2011,5(10):8100-8107.
doi: 10.1021/nn202699t pmid: 21932790
[34] Zhang S, Yang K, Feng LZ , et al. In vitro and In vitro behaviors of dextran functionalized graphene[J]. Carbon, 2011,49(12):4040-4049.
doi: 10.1016/j.carbon.2011.05.056
[1] Abulaiti Guliqihere,Qin Xu,Zhu Guangxun. Research progress of mitophagy in the onset and development of periodontal disease [J]. Int J Stomatol, 2024, 51(1): 68-73.
[2] Liu Tiqian,Liang Xing,Liu Weiqing,Li Xiaohong,Zhu Rui.. Research progress on the role and mechanism of occlusal trauma in the development of periodontitis [J]. Int J Stomatol, 2023, 50(1): 19-24.
[3] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[4] Hong Yaya,Chen Xuepeng,Si Misi. Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells [J]. Int J Stomatol, 2022, 49(3): 263-271.
[5] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[6] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[7] Chen Ye, Zhou Feng, Wu Qionghui, Che Huiling, Li Jiaxuan, Shen Jiaqi, Luo En. Effect of adiponectin on bone marrow mesenchymal stem cells and its regulatory mechanisms [J]. Int J Stomatol, 2021, 48(1): 58-63.
[8] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[9] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[10] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[11] Wang Runting,Fang Fuchun. Progress in research of non-coding RNAs in osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(2): 138-145.
[12] Yu Xiaohong,Liu Yu,Zeng Lian,Yang Yanling,Wang Zhou,Li Wei. Effects of enamel matrix derivative on proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(1): 24-31.
[13] Zhou Tingru,Li Yongsheng. Advances of dental pulp stem cells in osteogenic microenvironment [J]. Int J Stomatol, 2019, 46(6): 675-679.
[14] Mei Hongxiang,Zhang Yidan,Zhang Chenghao,Liu Enyan,Chen Hao,Zhao Zhihe,Liao Wen. Effect of epigallocatechin-3-gallate on stem cell proliferation and osteogenic differentiation [J]. Int J Stomatol, 2019, 46(4): 431-436.
[15] Wei Hu,Yifan Wang,Yifang Yuan,Ying Li,Bin Guo. Research progress on regulatory mechanism of the circadian clock genes on osteogenesis and bone resorption [J]. Int J Stomatol, 2019, 46(3): 302-307.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .