国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (5): 606-613.doi: 10.7518/gjkq.2025077

• 牙体牙髓病学专栏 • 上一篇    下一篇

应用于牙釉质的抗菌再矿化材料的研究进展

陈阿璇(),戴雯玉,韩向龙()   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心四川大学华西口腔医院正畸科 成都 610041
  • 收稿日期:2025-04-09 修回日期:2025-05-19 出版日期:2025-09-01 发布日期:2025-08-27
  • 通讯作者: 韩向龙
  • 作者简介:陈阿璇,医师,硕士,Email:869427550@qq.com
  • 基金资助:
    国家资助博士后研究人员计划(GZB20240483)

Research progress on antibacterial-remineralizing materials for dental enamel

Axuan Chen(),Wenyu Dai,Xianglong Han()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2025-04-09 Revised:2025-05-19 Online:2025-09-01 Published:2025-08-27
  • Contact: Xianglong Han
  • Supported by:
    National Postdoctoral Research Program(GZB20240483)

摘要:

抗菌再矿化材料凭借其多功能集成性突破、仿生结构设计优化、生物相容性提升及不良反应可控性显著等优势,近年来在龋病防治中受到广泛关注。本文总结了应用于牙釉质的抗菌再矿化材料的功能特点与作用机制,按照氟化物基材料、生物活性玻璃基材料、壳聚糖基材料、釉原蛋白衍生物与多肽、纳米材料体系、植物多酚复合物六大部分分类介绍了目前已有抗菌再矿化材料在龋病中的发展与应用现状,以期为龋病的预防和治疗提供参考,推动该类生物材料的进一步发展。

关键词: 牙釉质, 抗菌, 再矿化

Abstract:

Antibacterial-remineralizing materials have attracted extensive attention in recent years for caries prevention and treatment owing to their breakthroughs in multifunctional integration, optimized biomimetic structural design, enhanced biocompatibility, and remarkable controllability of side effects. This review summarizes the functional characteristics and mechanisms of action of antibacterial-remineralizing materials applied to dental enamel, with a systematic classification into six categories: fluoride-based materials, bioactive glass-based materials, chitosan-based composites, amelogenin derivatives and peptides, nanomaterial systems, and plant polyphenol complexes. This review aimed to provide refe-rences for clinical prevention and treatment strategies and promote further advancements in this field of bioactive materials.

Key words: dental enamel, antimicrobial, tooth remineralization

中图分类号: 

  • R318.08

图 1

应用于牙釉质的抗菌再矿化材料的分类及作用机制示意图"

表 1

应用于牙釉质的抗菌再矿化材料的分类及作用机制"

类别代表材料抗菌机制再矿化机制参考文献
氟化物基材料传统无机氟化物材料NaF、SnF2氟离子破坏细胞膜、干扰细菌代谢形成氟磷灰石抗酸溶解[12-15]
新型有机氟化物材料SDF氟离子破坏细胞膜、干扰细菌代谢;银离子破坏细胞膜、抑制细菌黏附;碱性特性提高局部pH值抑制细菌代谢[22-24]
生物活性玻璃基材料45S5碱性pH值环境抑制细菌代谢释放钙磷离子形成HAP层;硅离子诱导HAP沉积[27-29]
壳聚糖基材料CSH、PCSCS的正电荷破坏细胞膜CS黏附在牙釉质表面减少酸渗透;将钙磷离子递送至病变深层促进再矿化;诱导非晶态HAP向有序晶体转化;磷酸基团螯合钙离子形成成核位点[34-38]
釉原蛋白衍生物与多肽P11-4、CS-QP5、CS-rP172、CS-LRAP抗菌肽破坏细胞膜或干扰细菌代谢模拟天然牙釉质蛋白引导HAP有序沉积[43-47]
纳米材料体系钙磷基纳米材料ACP碱性pH值环境抑制细菌代谢释放钙磷离子促进再矿化[50]

有机大分子复合

纳米材料

ACP@SF-BZC、CPP-ACPBZC抑制细菌黏附和生物膜形成稳定ACP靶向递送钙磷离子[53-54]
光/激光响应型纳米材料TiO2-HAP复合物光催化产ROS杀灭细菌;激光杀灭表层细菌HAP提供矿化模板;激光加速HAP定向生长[55-57]
植物多酚复合物TP-ACP@CMC/LYZTP破坏生物膜;LYZ水解细菌壁CMC稳定ACP,缓释再矿化[58-59]

《口腔专科常用护理操作技术详解》出版发行"

[1] Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review[J]. F1000Res, 2020, 9: 171.
[2] Bai Y, Bonde J, Carneiro KM, et al. A brief history of the discovery of amelogenin nanoribbons in vitro and in vivo [J]. J Dent Res, 2021, 100(13): 1429-1433.
[3] Quigley RM, Kearney M, Kennedy OD, et al. Tissue engineering approaches for dental pulp regeneration: the development of novel bioactive materials using pharmacological epigenetic inhibitors[J]. Bioact Mater, 2024, 40: 182-211.
[4] Abdolahinia ED, Taher SI, Dehdezi PA, et al. Strategies and challenges in the treatment of dental enamel[J]. Cells Tissues Organs, 2023, 212(6): 485-498.
[5] Bian C, Guo YM, Zhu MY, et al. New generation of orthodontic devices and materials with bioactive capacities to improve enamel demineralization[J]. J Dent, 2024, 142: 104844.
[6] Ali S, Farooq I, Al-Thobity AM, et al. An in-vitro evaluation of fluoride content and enamel reminera-lization potential of two toothpastes containing different bioactive glasses[J]. Biomed Mater Eng, 2020, 30(5/6): 487-496.
[7] Ramadoss R, Padmanaban R, Subramanian B. Role of bioglass in enamel remineralization: existing strategies and future prospects-a narrative review[J]. J Biomed Mater Res B Appl Biomater, 2022, 110(1): 45-66.
[8] Inchingolo AD, Inchingolo AM, Malcangi G, et al. Effects of resveratrol, curcumin and quercetin supplementation on bone metabolism-a systematic review[J]. Nutrients, 2022, 14(17): 3519.
[9] Lazar L, Vlasa A, Beresescu L, et al. White spot lesions (WSLs)-post-orthodontic occurrence, management and treatment alternatives: a narrative review[J]. J Clin Med, 2023, 12(5): 1908.
[10] Cabalén MB, Molina GF, Bono A, et al. Nonresto-rative caries treatment: a systematic review update[J]. Int Dent J, 2022, 72(6): 746-764.
[11] Wang LH, Niu SQ, Xu SS, et al. CHN nanocompo-sites and nanocoating resist enamel white spot lesions by enhancing remineralization and antibacte-rial activity[J]. RSC Adv, 2024, 14(21): 15008-15020.
[12] Veneri F, Vinceti SR, Filippini T. Fluoride and ca-ries prevention: a scoping review of public health policies[J]. Ann Ig, 2024, 36(3): 270-280.
[13] Gupta A, Sharda S, Nishant, et al. Topical fluoride-antibacterial agent combined therapy versus topical fluoride monotherapy in preventing dental caries: a systematic review and meta-analysis[J]. Eur Arch Paediatr Dent, 2020, 21(6): 629-646.
[14] Shaalan O, El-Rashidy A. Antibacterial effect of miswak herbal toothpaste compared to fluoride toothpaste in high caries risk patients: randomized clinical trial[J]. J Clin Exp Dent, 2023, 15(7): e526-e534.
[15] Abdalla MM, Bijle MN, Abdallah NMA, et al. Enamel remineralization potential and antimicrobial effect of a fluoride varnish containing calcium strontium silicate[J]. J Dent, 2023, 138: 104731.
[16] Veneri F, Vinceti M, Generali L, et al. Fluoride exposure and cognitive neurodevelopment: systematic review and dose-response meta-analysis[J]. Environ Res, 2023, 221: 115239.
[17] Zhang KQ, Lu ZF, Guo XY. Advances in epidemiological status and pathogenesis of dental fluorosis[J]. Front Cell Dev Biol, 2023, 11: 1168215.
[18] Chan AKY, Tamrakar M, Jiang CM, et al. Clinical evidence for professionally applied fluoride therapy to prevent and arrest dental caries in older adults: a systematic review[J]. J Dent, 2022, 125: 104273.
[19] Piszko PJ, Piszko A, Kiryk J, et al. The influence of fluoride gels on the physicochemical properties of tooth tissues and dental materials-a systematic review[J]. Gels, 2024, 10(2): 98.
[20] Lopes AG, Magalhães TC, Denadai ÂML, et al. Preparation and characterization of NaF/Chitosan supramolecular complex and their effects on prevention of enamel demineralization[J]. J Mech Behav Biomed Mater, 2023, 147: 106134.
[21] Zhou J, Zhou L, Chen ZY, et al. Remineralization and bacterial inhibition of early enamel caries surfaces by carboxymethyl chitosan lysozyme nanogels loaded with antibacterial drugs[J]. J Dent, 2025, 152: 105489.
[22] Kale YJ, Misal S, Dadpe MV, et al. Comparison of cariostatic and remineralizing potential of two commercial silver diamine fluoride preparations using confocal laser microscopy and EDX-SEM spectroscopy: an in vitro study[J]. Int J Clin Pediatr Dent, 2022, 15(6): 643-651.
[23] Phonghanyudh A, Duangthip D, Mabangkhru S, et al. Is silver diamine fluoride effective in arresting enamel caries? A randomized clinical trial[J]. Int J Environ Res Public Health, 2022, 19(15): 8992.
[24] Zheng FM, Yan IG, Duangthip D, et al. Silver dia-mine fluoride therapy for dental care[J]. Jpn Dent Sci Rev, 2022, 58: 249-257.
[25] Zhu YL, Zhang XR, Chang GZ, et al. Bioactive glass in tissue regeneration: unveiling recent advan-ces in regenerative strategies and applications[J]. Adv Mater, 2025, 37(2): e2312964.
[26] Gupta S, Majumdar S, Krishnamurthy S. Bioactive glass: a multifunctional delivery system[J]. J Control Release, 2021, 335: 481-497.
[27] Nagasaki R, Nagano K, Nezu T, et al. Synthesis and characterization of bioactive glass and zinc oxide nanoparticles with enamel remineralization and antimicrobial capabilities[J]. Materials (Basel), 2023, 16(21): 6878.
[28] Ergucu Z, Yoruk I, Erdoğan A, et al. The use of toothpastes containing different formulations of fluo-ride and bioglass on bleached enamel[J]. Materials (Basel), 2023, 16(4): 1368.
[29] Tiskaya M, Shahid S, Gillam D, et al. The use of bioactive glass (BAG) in dental composites: a critical review[J]. Dent Mater, 2021, 37(2): 296-310.
[30] Yang SY, Han AR, Choi JW, et al. Novel antibacte-rial and apatite forming restorative composite resin incorporated with hydrated calcium silicate[J]. Biomater Res, 2023, 27(1): 25.
[31] Sergi R, Bellucci D, Salvatori R, et al. A novel bioactive glass containing therapeutic ions with enhanced biocompatibility[J]. Materials (Basel), 2020, 13(20): 4600.
[32] Simila HO, Boccaccini AR. Sol-gel bioactive glass containing biomaterials for restorative dentistry: a review[J]. Dent Mater, 2022, 38(5): 725-747.
[33] Kou SG, Peters LM, Mucalo MR. Chitosan: a review of sources and preparation methods[J]. Int J Biol Macromol, 2021, 169: 85-94.
[34] Pourhajibagher M, Keshavarz Valian N, Bahador A. Theranostic nanoplatforms of emodin-chitosan with blue laser light on enhancing the anti-biofilm activity of photodynamic therapy against Streptococcus mutans biofilms on the enamel surface[J]. BMC Microbiol, 2022, 22(1): 68.
[35] Nimbeni SB, Nimbeni BS, Divakar DD. Role of chitosan in remineralization of enamel and dentin: a systematic review[J]. Int J Clin Pediatr Dent, 2021, 14(4): 562-568.
[36] Pini NIP, Piccelli MR, Vieira-Junior WF, et al. In-office tooth bleaching with chitosan-enriched hydrogen peroxide gels: in vitro results[J]. Clin Oral Investig, 2022, 26(1): 471-479.
[37] Rout SR, Kar B, Pradhan D, et al. Chitosan as a potential biomaterial for the management of oral mucositis, a common complication of cancer treatment[J]. Pharm Dev Technol, 2023, 28(1): 78-94.
[38] Fernandes GLP, Vanim MM, Delbem ACB, et al. Antibacterial, cytotoxic and mechanical properties of a orthodontic cement with phosphate nano-sized and phosphorylated chitosan: an in vitro study[J]. J Dent, 2024, 146: 105073.
[39] Yan JR, Yang HY, Luo T, et al. Application of amorphous calcium phosphate agents in the prevention and treatment of enamel demineralization[J]. Front Bioeng Biotechnol, 2022, 10: 853436.
[40] Li YR, Li YW, Bai QH, et al. Recombinant amelogenin peptide TRAP promoting remineralization of early enamel caries: an in vitro study[J]. Front Physiol, 2023, 14: 1076265.
[41] Dissanayake SSM, Ekambaram M, Li KC, et al. Identification of key functional motifs of native a-melogenin protein for dental enamel remineralisation[J]. Molecules, 2020, 25(18): 4214.
[42] Moradian-Oldak J, George A. Biomineralization of enamel and dentin mediated by matrix proteins[J]. J Dent Res, 2021, 100(10): 1020-1029.
[43] Dawasaz AA, Togoo RA, Mahmood Z, et al. Effectiveness of self-assembling peptide (P11-4) in dental hard tissue conditions: a comprehensive review[J]. Polymers (Basel), 2022, 14(4): 792.
[44] Alkilzy M, Qadri G, Splieth CH, et al. Biomimetic enamel regeneration using self-assembling peptide P11-4[J]. Biomimetics (Basel), 2023, 8(3): 290.
[45] Shaalan O, Fawzy El-Sayed K, Abouauf E. Evaluation of the remineralization potential of self-assembling peptide P11-4 with fluoride compared to fluoride varnish in the management of incipient carious lesions: a randomized controlled clinical trial[J]. Clin Oral Investig, 2024, 28(8): 438.
[46] Luiz MT, di Filippo LD, Dutra JAP, et al. New technological approaches for dental caries treatment: from liquid crystalline systems to nanocarriers[J]. Pharmaceutics, 2023, 15(3): 762.
[47] Fratila DN, Virvescu DI, Luchian I, et al. Advances and functional integration of hydrogel composites as drug delivery systems in contemporary dentistry[J]. Gels, 2024, 10(10): 661.
[48] Dawasaz AA, Togoo RA, Mahmood Z, et al. Re-mineralization of dentinal lesions using biomimetic agents: a systematic review and meta-analysis[J]. Biomimetics (Basel), 2023, 8(2): 159.
[49] Fosca M, Rau JV, Uskoković V. Factors influencing the drug release from calcium phosphate cements[J]. Bioact Mater, 2021, 7: 341-363.
[50] Fan ML, Li M, Yang YM, et al. Dual-functional adhesive containing amorphous calcium phosphate nanoparticles and dimethylaminohexadecyl metha-crylate promoted enamel remineralization in a biofilm-challenged environment[J]. Dent Mater, 2022, 38(9): 1518-1531.
[51] Adelnia H, Tran HDN, Little PJ, et al. Poly(aspartic acid) in biomedical applications: from polymerization, modification, properties, degradation, and biocompatibility to applications[J]. ACS Biomater Sci Eng, 2021, 7(6): 2083-2105.
[52] Yacout YM, Nabawy YA, El-Harouni NM, et al. Shear bond strength of metallic brackets bonded to enamel pretreated with CPP-ACP: a systematic review and meta-analysis of in vitro studies[J]. BMC Oral Health, 2023, 23(1): 440.
[53] de Oliveira PRA, Barreto LSDC, Tostes MA. Effectiveness of CPP-ACP and fluoride products in tooth remineralization[J]. Int J Dent Hyg, 2022, 20(4): 635-642.
[54] Zhi C, Chen X, Yu KN, et al. A bifunctional nano complex with remineralizing and antibacterial acti-vities to interrupt dental caries[J]. J Control Release, 2024, 376: 717-731.
[55] Elbasuney S, El-Khawaga AM, Elsayed MA, et al. Enhanced photocatalytic and antibacterial activities of novel Ag-HA bioceramic nanocatalyst for waste-water treatment[J]. Sci Rep, 2023, 13(1): 13819.
[56] Wang RX, Jia CH, Zheng NN, et al. Effects of photodynamic therapy on Streptococcus mutans and enamel remineralization of multifunctional TiO2-HAP composite nanomaterials[J]. Photodiagnosis Photodyn Ther, 2023, 42: 103141.
[57] Xue VW, Zhao IS, Yin IX, et al. Effects of 9, 300 nm carbon dioxide laser on dental hard tissue: a concise review[J]. Clin Cosmet Investig Dent, 2021, 13: 155-161.
[58] Rana A, Samtiya M, Dhewa T, et al. Health benefits of polyphenols: a concise review[J]. J Food Biochem, 2022, 46(10): e14264.
[59] Zhang WN, Liu YN, Zhang X, et al. Tea polyphenols-loaded nanocarriers: preparation technology and biological function[J]. Biotechnol Lett, 2022, 44(3): 387-398.
[1] 赖思悦, 李博磊, 程磊. 光热治疗辅助根管冲洗治疗根尖周炎的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 565-571.
[2] 李佳敏,李毓晨,葛张洁,廖凌子,郭鑫,郭晓龙,周平. 抗菌肽在口腔钛种植体涂层中的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 572-584.
[3] 张政,杨锋,李家锋,曹焜. 钛种植体抗菌化修饰的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 585-595.
[4] 马玉, 左玉, 刘建华. 抗菌光动力疗法与全身抗菌药物辅助治疗牙周炎疗效比较的Meta分析[J]. 国际口腔医学杂志, 2024, 51(4): 406-415.
[5] 温星悦, 赵骏宇, 赵崇钧, 王贵欣, 黄睿洁. 壳聚糖治疗牙周病的研究进展[J]. 国际口腔医学杂志, 2024, 51(4): 416-424.
[6] 谭永臻,梁新华. 口腔局部麻醉药抗菌机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 74-81.
[7] 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394.
[8] 王钢,陈卓. 邻面去釉后釉质表面患龋风险控制的描述性综述[J]. 国际口腔医学杂志, 2023, 50(4): 395-400.
[9] 高宇天,苏勤. 酸性氧化电位水在根管治疗中的研究与应用[J]. 国际口腔医学杂志, 2023, 50(4): 401-406.
[10] 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216.
[11] 王启秋,支清惠. 釉质白垩斑治疗方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 717-723.
[12] 张曦丹,孙吉宇,付馨靓,甘雪琦. 介孔硅酸钙纳米材料在牙体牙髓及颅颌面修复领域的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 476-482.
[13] 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340.
[14] 陈亮,丁一,孟姝. 宿主调节治疗在牙周病治疗中的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 706-710.
[15] 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张超颖,李怡宁,龚佳幸,王慧明. 2022年世界卫生组织指南头颈部肿瘤分类的解读:牙源性和颌面部骨肿瘤[J]. 国际口腔医学杂志, 2023, 50(3): 263 -271 .