国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (4): 395-400.doi: 10.7518/gjkq.2023046
摘要:
邻面去釉是一项在牙齿邻面去除少量釉质的术式,目的在于解除轻、中度的牙列拥挤或改善牙齿形态。邻面去釉术后,釉质表面的粗糙度升高,矿化程度降低,加之所处的解剖位置隐匿,导致术后的患龋风险较术前明显升高,易发生白垩病变甚至龋病,因此邻面去釉后釉质表面患龋风险的控制至关重要。目前临床上有多种控制邻面去釉术后釉质表面患龋风险的措施,包括合理选择去釉器械,即刻表面抛光,应用氟制剂,渗透树脂修复和再矿化药物修复等。本文对这些措施的研究进展及效果评价进行综述,旨在为邻面去釉后患龋风险的基础研究及临床治疗研究提供依据。
中图分类号:
1 | Pindoria J, Fleming PS, Sharma PK. Inter-proximal enamel reduction in contemporary orthodontics[J]. Br Dent J, 2016, 221(12): 757-763. |
2 | Meredith L, Mei L, Cannon RD, et al. Interproximal reduction in orthodontics: why, where, how much to remove[J]. Australas Orthod J, 2017, 33(2): 150-157. |
3 | Bamashmous MS. Veneer or interproximal enamel reduction[J]. J Contemp Dent Pract, 2018, 19(6): 749-751. |
4 | Laganà G, Malara A, Lione R, et al. Enamel interproximal reduction during treatment with clear aligners: digital planning versus OrthoCAD analysis[J]. BMC Oral Health, 2021, 21(1): 199. |
5 | de Felice ME, Nucci L, Fiori A, et al. Accuracy of interproximal enamel reduction during clear aligner treatment[J]. Prog Orthod, 2020, 21(1): 28. |
6 | 郑宇祥, 胡江天. 正畸邻面去釉影响因素的研究进展[J]. 医学综述, 2019, 25(8): 1541-1545. |
Zheng YX, Hu JT. Study on influencing factors on thickness of interproximal enamel reduction[J]. Med Recapitul, 2019, 25(8): 1541-1545. | |
7 | Kailasam V, Rangarajan H, Easwaran HN, et al. Proximal enamel thickness of the permanent teeth: a systematic review and meta-analysis[J]. Am J Orthod Dentofacial Orthop, 2021, 160(6): 793-804.e3. |
8 | Triduo M, Zubizarreta-Macho Á, Pérez-Barquero JA, et al. A novel digital technique to quantify the area and volume of enamel removal after interproximal enamel reduction[J]. Appl Sci, 2021, 11(3): 1274. |
9 | Hariharan A, Arqub SA, Gandhi V, et al. Evaluation of interproximal reduction in individual teeth, and full arch assessment in clear aligner therapy: digital planning versus 3D model analysis after reduction[J]. Prog Orthod, 2022, 23(1): 9. |
10 | Kelly AM, Kallistova A, Küchler EC, et al. Measu-ring the microscopic structures of human dental ena-mel can predict caries experience[J]. J Pers Med, 2020, 10(1): 5. |
11 | Zachrisson BU, Nyøygaard L, Mobarak K. Dental health assessed more than 10 years after interproximal enamel reduction of mandibular anterior teeth[J]. Am J Orthod Dentofacial Orthop, 2007, 131(2): 162-169. |
12 | Zachrisson BU, Minster L, Ogaard B, et al. Dental health assessed after interproximal enamel reduction: caries risk in posterior teeth[J]. Am J Orthod Dentofacial Orthop, 2011, 139(1): 90-98. |
13 | Cremonini C, Giannoccaro V, Palone M, et al. In vitro study of tooth surfaces after interproximal ena-mel reduction: extraoral scanner and SEM analysis[J]. Pesqui Bras Odontopediatria Clín Integr, 2021, 21(): e0021. |
14 | Danesh G, PKK Podstawa, Schwartz CE, et al. Depth of acid penetration and enamel surface roughness associated with different methods of interproximal enamel reduction[J]. PLoS One, 2020, 15(3): e0229595. |
15 | Ben Mohimd H, Kaaouara Y, Azaroual F, et al. Enamel protection after stripping procedures: an in vivo study[J]. Int Orthod, 2019, 17(2): 243-248. |
16 | Bayram M, Kusgoz A, Yesilyurt C, et al. Effects of casein phosphopeptide-amorphous calcium phosphate application after interproximal stripping on e-namel surface: an in-vivo study[J]. Am J Orthod Dentofacial Orthop, 2017, 151(1): 167-173. |
17 | Lin WT, Kitasako Y, Nakashima S, et al. A comparative study of the susceptibility of cut and uncut enamel to erosive demineralization[J]. Dent Mater J, 2017, 36(1): 48-53. |
18 | Livas C, Jongsma AC, Ren YJ. Enamel reduction techniques in orthodontics: a literature review[J]. Open Dent J, 2013, 7: 146-151. |
19 | Nassif N, Gholmieh MN, Sfeir E, et al. In vitro Macro-qualitative comparison of three enamel stripping procedures: what is the best shape we can get[J]. Int J Clin Pediatr Dent, 2017, 10(4): 358-362. |
20 | Banga K, Arora N, Kannan S, et al. Evaluation of temperature rise in the pulp during various IPR techniques-an in vivo study[J]. Prog Orthod, 2020, 21(1): 40. |
21 | Gazzani F, Lione R, Pavoni C, et al. Comparison of the abrasive properties of two different systems for interproximal enamel reduction: oscillating versus ma-nual strips[J]. BMC Oral Health, 2019, 19(1): 247. |
22 | Kaaouara Y, Mohind HB, Azaroual MF, et al. In vivo enamel stripping: a macroscopic and microscopic analytical study[J]. Int Orthod, 2019, 17(2): 235-242. |
23 | Meredith L, Farella M, Lowrey S, et al. Atomic force microscopy analysis of enamel nanotopography after interproximal reduction[J]. Am J Orthod Dentofacial Orthop, 2017, 151(4): 750-757. |
24 | Hellak AF, Riepe EM, Seubert A, et al. Enamel demineralization after different methods of interproximal polishing[J]. Clin Oral Investig, 2015, 19(8): 1965-1972. |
25 | Vicente A, Ortiz Ruiz AJ, González Paz BM, et al. Efficacy of fluoride varnishes for preventing enamel demineralization after interproximal enamel reduction. Qualitative and quantitative evaluation[J]. PLoS One, 2017, 12(4): e0176389. |
26 | Zanatta RF, Caneppele TMF, Scaramucci T, et al. Protective effect of fluorides on erosion and erosion/abrasion in enamel: a systematic review and meta-analysis of randomized in situ trials[J]. Arch Oral Biol, 2020, 120: 104945. |
27 | Pini NIP, Lima DANL, Luka B, et al. Viscosity of chitosan impacts the efficacy of F/Sn containing toothpastes against erosive/abrasive wear in enamel[J]. J Dent, 2020, 92: 103247. |
28 | Körner P, Schleich JA, Wiedemeier DB, et al. Effects of additional use of bioactive glasses or a hydroxyapatite toothpaste on remineralization of artificial lesions in vitro [J]. Caries Res, 2020, 54(4): 336-342. |
29 | Leal IC, Costa WKF, Passos VF. Fluoride dentifrice containing calcium silicate and sodium phosphate salts on dental erosion: in vitro study[J]. Arch Oral Biol, 2020, 118: 104857. |
30 | Perdigão J. Resin infiltration of enamel white spot lesions: an ultramorphological analysis[J]. J Esthet Restor Dent, 2020, 32(3): 317-324. |
31 | Yin P, Zheng Q, Zhou T, et al. The effect of resin infiltration vs. fluoride varnish in enhancing enamel surface conditions after interproximal reduction[J]. Dent Mater J, 2016, 35(5): 756-761. |
32 | Yazkan B, Ermis RB. Effect of resin infiltration and microabrasion on the microhardness, surface roughness and morphology of incipient carious lesions[J]. Acta Odontol Scand, 2018, 76(7): 473-481. |
33 | Chen M, Li JZ, Zuo QL, et al. Accelerated aging effects on color, microhardness and microstructure of ICON resin infiltration[J]. Eur Rev Med Pharmacol Sci, 2019, 23(18): 7722-7731. |
34 | Cross KJ, Huq NL, Stanton DP, et al. NMR studies of a novel calcium, phosphate and fluoride delivery vehicle-alpha(S1)-casein(59-79) by stabilized amorphous calcium fluoride phosphate nanocomplexes[J]. Biomaterials, 2004, 25(20): 5061-5069. |
35 | Yu H, Jiang NW, Ye XY, et al. In situ effect of tooth mousse containing CPP-ACP on human enamel subjected to in vivo acid attacks[J]. J Dent, 2018, 76: 40-45. |
36 | Reise M, Kranz S, Heyder M, et al. Effectiveness of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) compared to fluoride products in an in-vitro demineralization model[J]. Materials, 2021, 14(20): 5974. |
37 | Sionov RV, Tsavdaridou D, Aqawi M, et al. Tooth mousse containing casein phosphopeptide-amor-phous calcium phosphate prevents biofilm formation of Streptococcus mutans [J]. BMC Oral Health, 2021, 21(1): 136. |
38 | Alencar CRB, Oliveira GC, Magalhães AC, et al. In situ effect of CPP-ACP chewing gum upon erosive enamel loss[J]. J Appl Oral Sci, 2017, 25(3): 258-264. |
39 | Jordão MC, Ionta FQ, Bergantin BT, et al. The effect of mucin in artificial saliva on erosive reharde-ning and demineralization[J]. Caries Res, 2017, 51(2): 136-140. |
40 | Vicente A, Ortiz-Ruiz AJ, González-Paz BM, et al. Effectiveness of a toothpaste and a serum contai-ning calcium silicate on protecting the enamel after interproximal reduction against demineralization[J]. Sci Rep, 2021, 11: 834. |
41 | Li L, Mao CY, Wang JM, et al. Bio-inspired enamel repair via Glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics[J]. Adv Mater, 2011, 23(40): 4695-4701. |
42 | Fang ZH, Guo MX, Zhou QL, et al. Enamel-like tissue regeneration by using biomimetic enamel matrix proteins[J]. Int J Biol Macromol, 2021, 183: 2131-2141. |
43 | Shao CY, Jin B, Mu Z, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth[J]. Sci Adv, 2019, 5(8): eaaw9569. |
[1] | 王启秋,支清惠. 釉质白垩斑治疗方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 717-723. |
[2] | 陶思颖,梁坤能,李继遥. 仿生多肽促进牙体硬组织再矿化的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 37-42. |
[3] | 罗惟丹, 李明云, 周学东, 程磊. 纳米羟磷灰石在牙体修复和牙髓治疗领域的应用[J]. 国际口腔医学杂志, 2018, 45(2): 192-198. |
[4] | 陈慧, 程磊. 防龋粘接材料的研究进展[J]. 国际口腔医学杂志, 2017, 44(1): 92-97. |
[5] | 王压冲, 胡德渝, 董滢, 涂蕊, 李雪, 孔恒. 成都农村儿童患龋状况调查报告[J]. 国际口腔医学杂志, 2017, 44(1): 28-31. |
[6] | 杜琳玲 冯娟. 人中性粒细胞肽-1~3及其与患龋风险的关系[J]. 国际口腔医学杂志, 2015, 42(6): 699-702. |
[7] | 武诗语 麦穗. 玻璃离子在牙本质再矿化中的作用[J]. 国际口腔医学杂志, 2015, 42(1): 114-118. |
[8] | 郗红 周惠 闫秀娟 张宇娜 胡玮玮 黄洋. 纳米技术在龋病治疗中应用的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 563-566. |
[9] | 许鹏程 徐欣 周学东. 钙磷再矿化及其系统[J]. 国际口腔医学杂志, 2014, 41(3): 347-350. |
[10] | 刘鑫1 谭理军2 李涛1 黄诗言1. 不同种类茶对牛牙的釉质脱矿影响的体外初步研究[J]. 国际口腔医学杂志, 2013, 40(6): 710-713. |
[11] | 黄雅静 李月恒 黄锐 钱英子 段艳霞 周智. 几种牙膏对早期釉质龋再矿化效果的体外研究[J]. 国际口腔医学杂志, 2012, 39(6): 710-713. |
[12] | 邢琳 曲勃颖综述 黄洋审校. 釉质龋的非破坏性治疗方法[J]. 国际口腔医学杂志, 2012, 39(1): 63-65. |
[13] | 罗菁菁综述 唐旭炎 李全利审校. 酪蛋白磷酸肽-无定形磷酸钙促进牙再矿化的机制[J]. 国际口腔医学杂志, 2011, 38(6): 662-664. |
[14] | 张琼,邹静,. 酪蛋白磷酸肽钙磷复合体在牙菌斑中的作用[J]. 国际口腔医学杂志, 2008, 35(S1): -. |
[15] | 李雪,刘敏川,胡德渝,. 臭氧在龋病治疗中的作用[J]. 国际口腔医学杂志, 2006, 33(01): 56-59. |
|