国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (4): 395-400.doi: 10.7518/gjkq.2023046

• 牙体牙髓病学专栏 • 上一篇    下一篇

邻面去釉后釉质表面患龋风险控制的描述性综述

王钢(),陈卓()   

  1. 浙江大学医学院附属口腔医院牙体牙髓科 浙江大学口腔医学院 浙江省口腔疾病临床医学研究中心浙江省口腔生物医学研究重点实验室 浙江大学癌症研究院 杭州 310006
  • 收稿日期:2022-12-30 修回日期:2023-02-15 出版日期:2023-07-01 发布日期:2023-06-21
  • 通讯作者: 陈卓
  • 作者简介:王钢,硕士,Email:gang_wang@zju.edu.cn
  • 基金资助:
    浙江省“尖兵”“领雁”研发攻关计划(2022C03164)

Reduction of the risk of caries after interproximal enamel reduction

Wang Gang(),Chen Zhuo.()   

  1. Dept. of Cariology and Endodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Pro-vince, Cancer Center of Zhejiang University, Hangzhou 310006, China
  • Received:2022-12-30 Revised:2023-02-15 Online:2023-07-01 Published:2023-06-21
  • Contact: Zhuo. Chen
  • Supported by:
    “Pioneer” and “Leading Goose” Research and Development Program in Zhe-jiang Province(2022C03164)

摘要:

邻面去釉是一项在牙齿邻面去除少量釉质的术式,目的在于解除轻、中度的牙列拥挤或改善牙齿形态。邻面去釉术后,釉质表面的粗糙度升高,矿化程度降低,加之所处的解剖位置隐匿,导致术后的患龋风险较术前明显升高,易发生白垩病变甚至龋病,因此邻面去釉后釉质表面患龋风险的控制至关重要。目前临床上有多种控制邻面去釉术后釉质表面患龋风险的措施,包括合理选择去釉器械,即刻表面抛光,应用氟制剂,渗透树脂修复和再矿化药物修复等。本文对这些措施的研究进展及效果评价进行综述,旨在为邻面去釉后患龋风险的基础研究及临床治疗研究提供依据。

关键词: 邻面去釉, 患龋风险, 氟制剂, 渗透树脂, 再矿化

Abstract:

Interproximal enamel reduction is a procedure where a small amount of enamel is removed from the ad-jacent surfaces of the teeth to relieve mild to moderate dental crowding or to improve the shape of the teeth. However, the increased roughness and decreased mineralization of enamel after the procedure and the hidden anatomical location lead to a significantly higher caries risk and a tendency to develop chalky lesions and even caries. Therefore, it is important to control the risk of caries on the enamel surface after interproximal enamel reduction. At present, there are several clinical measures to reduce the risk of caries after interproximal enamel reduction, including reasonable selection of interproximal enamel reduction instruments, immediate surface polishing, application of fluoride products, resin infiltration repair, and remineralization drug repair. This article reviews the latest research and therapeutic effects of these measures, providing a basis and new ideas for clinical treatment and basic research.

Key words: interproximal enamel reduction, risk of caries, fluoride products, resin infiltration, remineralization

中图分类号: 

  • R 783.5
1 Pindoria J, Fleming PS, Sharma PK. Inter-proximal enamel reduction in contemporary orthodontics[J]. Br Dent J, 2016, 221(12): 757-763.
2 Meredith L, Mei L, Cannon RD, et al. Interproximal reduction in orthodontics: why, where, how much to remove[J]. Australas Orthod J, 2017, 33(2): 150-157.
3 Bamashmous MS. Veneer or interproximal enamel reduction[J]. J Contemp Dent Pract, 2018, 19(6): 749-751.
4 Laganà G, Malara A, Lione R, et al. Enamel interproximal reduction during treatment with clear aligners: digital planning versus OrthoCAD analysis[J]. BMC Oral Health, 2021, 21(1): 199.
5 de Felice ME, Nucci L, Fiori A, et al. Accuracy of interproximal enamel reduction during clear aligner treatment[J]. Prog Orthod, 2020, 21(1): 28.
6 郑宇祥, 胡江天. 正畸邻面去釉影响因素的研究进展[J]. 医学综述, 2019, 25(8): 1541-1545.
Zheng YX, Hu JT. Study on influencing factors on thickness of interproximal enamel reduction[J]. Med Recapitul, 2019, 25(8): 1541-1545.
7 Kailasam V, Rangarajan H, Easwaran HN, et al. Proximal enamel thickness of the permanent teeth: a systematic review and meta-analysis[J]. Am J Orthod Dentofacial Orthop, 2021, 160(6): 793-804.e3.
8 Triduo M, Zubizarreta-Macho Á, Pérez-Barquero JA, et al. A novel digital technique to quantify the area and volume of enamel removal after interproximal enamel reduction[J]. Appl Sci, 2021, 11(3): 1274.
9 Hariharan A, Arqub SA, Gandhi V, et al. Evaluation of interproximal reduction in individual teeth, and full arch assessment in clear aligner therapy: digital planning versus 3D model analysis after reduction[J]. Prog Orthod, 2022, 23(1): 9.
10 Kelly AM, Kallistova A, Küchler EC, et al. Measu-ring the microscopic structures of human dental ena-mel can predict caries experience[J]. J Pers Med, 2020, 10(1): 5.
11 Zachrisson BU, Nyøygaard L, Mobarak K. Dental health assessed more than 10 years after interproximal enamel reduction of mandibular anterior teeth[J]. Am J Orthod Dentofacial Orthop, 2007, 131(2): 162-169.
12 Zachrisson BU, Minster L, Ogaard B, et al. Dental health assessed after interproximal enamel reduction: caries risk in posterior teeth[J]. Am J Orthod Dentofacial Orthop, 2011, 139(1): 90-98.
13 Cremonini C, Giannoccaro V, Palone M, et al. In vitro study of tooth surfaces after interproximal ena-mel reduction: extraoral scanner and SEM analysis[J]. Pesqui Bras Odontopediatria Clín Integr, 2021, 21(): e0021.
14 Danesh G, PKK Podstawa, Schwartz CE, et al. Depth of acid penetration and enamel surface roughness associated with different methods of interproximal enamel reduction[J]. PLoS One, 2020, 15(3): e0229595.
15 Ben Mohimd H, Kaaouara Y, Azaroual F, et al. Enamel protection after stripping procedures: an in vivo study[J]. Int Orthod, 2019, 17(2): 243-248.
16 Bayram M, Kusgoz A, Yesilyurt C, et al. Effects of casein phosphopeptide-amorphous calcium phosphate application after interproximal stripping on e-namel surface: an in-vivo study[J]. Am J Orthod Dentofacial Orthop, 2017, 151(1): 167-173.
17 Lin WT, Kitasako Y, Nakashima S, et al. A comparative study of the susceptibility of cut and uncut enamel to erosive demineralization[J]. Dent Mater J, 2017, 36(1): 48-53.
18 Livas C, Jongsma AC, Ren YJ. Enamel reduction techniques in orthodontics: a literature review[J]. Open Dent J, 2013, 7: 146-151.
19 Nassif N, Gholmieh MN, Sfeir E, et al. In vitro Macro-qualitative comparison of three enamel stripping procedures: what is the best shape we can get[J]. Int J Clin Pediatr Dent, 2017, 10(4): 358-362.
20 Banga K, Arora N, Kannan S, et al. Evaluation of temperature rise in the pulp during various IPR techniques-an in vivo study[J]. Prog Orthod, 2020, 21(1): 40.
21 Gazzani F, Lione R, Pavoni C, et al. Comparison of the abrasive properties of two different systems for interproximal enamel reduction: oscillating versus ma-nual strips[J]. BMC Oral Health, 2019, 19(1): 247.
22 Kaaouara Y, Mohind HB, Azaroual MF, et al. In vivo enamel stripping: a macroscopic and microscopic analytical study[J]. Int Orthod, 2019, 17(2): 235-242.
23 Meredith L, Farella M, Lowrey S, et al. Atomic force microscopy analysis of enamel nanotopography after interproximal reduction[J]. Am J Orthod Dentofacial Orthop, 2017, 151(4): 750-757.
24 Hellak AF, Riepe EM, Seubert A, et al. Enamel demineralization after different methods of interproximal polishing[J]. Clin Oral Investig, 2015, 19(8): 1965-1972.
25 Vicente A, Ortiz Ruiz AJ, González Paz BM, et al. Efficacy of fluoride varnishes for preventing enamel demineralization after interproximal enamel reduction. Qualitative and quantitative evaluation[J]. PLoS One, 2017, 12(4): e0176389.
26 Zanatta RF, Caneppele TMF, Scaramucci T, et al. Protective effect of fluorides on erosion and erosion/abrasion in enamel: a systematic review and meta-analysis of randomized in situ trials[J]. Arch Oral Biol, 2020, 120: 104945.
27 Pini NIP, Lima DANL, Luka B, et al. Viscosity of chitosan impacts the efficacy of F/Sn containing toothpastes against erosive/abrasive wear in enamel[J]. J Dent, 2020, 92: 103247.
28 Körner P, Schleich JA, Wiedemeier DB, et al. Effects of additional use of bioactive glasses or a hydroxyapatite toothpaste on remineralization of artificial lesions in vitro [J]. Caries Res, 2020, 54(4): 336-342.
29 Leal IC, Costa WKF, Passos VF. Fluoride dentifrice containing calcium silicate and sodium phosphate salts on dental erosion: in vitro study[J]. Arch Oral Biol, 2020, 118: 104857.
30 Perdigão J. Resin infiltration of enamel white spot lesions: an ultramorphological analysis[J]. J Esthet Restor Dent, 2020, 32(3): 317-324.
31 Yin P, Zheng Q, Zhou T, et al. The effect of resin infiltration vs. fluoride varnish in enhancing enamel surface conditions after interproximal reduction[J]. Dent Mater J, 2016, 35(5): 756-761.
32 Yazkan B, Ermis RB. Effect of resin infiltration and microabrasion on the microhardness, surface roughness and morphology of incipient carious lesions[J]. Acta Odontol Scand, 2018, 76(7): 473-481.
33 Chen M, Li JZ, Zuo QL, et al. Accelerated aging effects on color, microhardness and microstructure of ICON resin infiltration[J]. Eur Rev Med Pharmacol Sci, 2019, 23(18): 7722-7731.
34 Cross KJ, Huq NL, Stanton DP, et al. NMR studies of a novel calcium, phosphate and fluoride delivery vehicle-alpha(S1)-casein(59-79) by stabilized amorphous calcium fluoride phosphate nanocomplexes[J]. Biomaterials, 2004, 25(20): 5061-5069.
35 Yu H, Jiang NW, Ye XY, et al. In situ effect of tooth mousse containing CPP-ACP on human enamel subjected to in vivo acid attacks[J]. J Dent, 2018, 76: 40-45.
36 Reise M, Kranz S, Heyder M, et al. Effectiveness of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) compared to fluoride products in an in-vitro demineralization model[J]. Materials, 2021, 14(20): 5974.
37 Sionov RV, Tsavdaridou D, Aqawi M, et al. Tooth mousse containing casein phosphopeptide-amor-phous calcium phosphate prevents biofilm formation of Streptococcus mutans [J]. BMC Oral Health, 2021, 21(1): 136.
38 Alencar CRB, Oliveira GC, Magalhães AC, et al. In situ effect of CPP-ACP chewing gum upon erosive enamel loss[J]. J Appl Oral Sci, 2017, 25(3): 258-264.
39 Jordão MC, Ionta FQ, Bergantin BT, et al. The effect of mucin in artificial saliva on erosive reharde-ning and demineralization[J]. Caries Res, 2017, 51(2): 136-140.
40 Vicente A, Ortiz-Ruiz AJ, González-Paz BM, et al. Effectiveness of a toothpaste and a serum contai-ning calcium silicate on protecting the enamel after interproximal reduction against demineralization[J]. Sci Rep, 2021, 11: 834.
41 Li L, Mao CY, Wang JM, et al. Bio-inspired enamel repair via Glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics[J]. Adv Mater, 2011, 23(40): 4695-4701.
42 Fang ZH, Guo MX, Zhou QL, et al. Enamel-like tissue regeneration by using biomimetic enamel matrix proteins[J]. Int J Biol Macromol, 2021, 183: 2131-2141.
43 Shao CY, Jin B, Mu Z, et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth[J]. Sci Adv, 2019, 5(8): eaaw9569.
[1] 王启秋,支清惠. 釉质白垩斑治疗方法的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 717-723.
[2] 陶思颖,梁坤能,李继遥. 仿生多肽促进牙体硬组织再矿化的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 37-42.
[3] 罗惟丹, 李明云, 周学东, 程磊. 纳米羟磷灰石在牙体修复和牙髓治疗领域的应用[J]. 国际口腔医学杂志, 2018, 45(2): 192-198.
[4] 陈慧, 程磊. 防龋粘接材料的研究进展[J]. 国际口腔医学杂志, 2017, 44(1): 92-97.
[5] 王压冲, 胡德渝, 董滢, 涂蕊, 李雪, 孔恒. 成都农村儿童患龋状况调查报告[J]. 国际口腔医学杂志, 2017, 44(1): 28-31.
[6] 杜琳玲 冯娟. 人中性粒细胞肽-1~3及其与患龋风险的关系[J]. 国际口腔医学杂志, 2015, 42(6): 699-702.
[7] 武诗语 麦穗. 玻璃离子在牙本质再矿化中的作用[J]. 国际口腔医学杂志, 2015, 42(1): 114-118.
[8] 郗红 周惠 闫秀娟 张宇娜 胡玮玮 黄洋. 纳米技术在龋病治疗中应用的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 563-566.
[9] 许鹏程 徐欣 周学东. 钙磷再矿化及其系统[J]. 国际口腔医学杂志, 2014, 41(3): 347-350.
[10] 刘鑫1 谭理军2 李涛1 黄诗言1. 不同种类茶对牛牙的釉质脱矿影响的体外初步研究[J]. 国际口腔医学杂志, 2013, 40(6): 710-713.
[11] 黄雅静 李月恒 黄锐 钱英子 段艳霞 周智. 几种牙膏对早期釉质龋再矿化效果的体外研究[J]. 国际口腔医学杂志, 2012, 39(6): 710-713.
[12] 邢琳 曲勃颖综述 黄洋审校. 釉质龋的非破坏性治疗方法[J]. 国际口腔医学杂志, 2012, 39(1): 63-65.
[13] 罗菁菁综述 唐旭炎 李全利审校. 酪蛋白磷酸肽-无定形磷酸钙促进牙再矿化的机制[J]. 国际口腔医学杂志, 2011, 38(6): 662-664.
[14] 张琼,邹静,. 酪蛋白磷酸肽钙磷复合体在牙菌斑中的作用[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[15] 李雪,刘敏川,胡德渝,. 臭氧在龋病治疗中的作用[J]. 国际口腔医学杂志, 2006, 33(01): 56-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 田磊. 局部应用脂多糖后结合上皮反应性增生的变化[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .