国际口腔医学杂志 ›› 2026, Vol. 53 ›› Issue (2): 247-256.doi: 10.7518/gjkq.2026025

• 综述 • 上一篇    

乳酸及乳酸化修饰在口腔鳞状细胞癌中的研究进展

付莹欣1,2(),顾智玉2,周灵2,林龙2,林静2,刘云坤2()   

  1. 1.南京医科大学附属口腔医院 南京 210029
    2.遵义医科大学附属口腔医院 遵义 563000
  • 收稿日期:2025-05-28 修回日期:2025-07-28 出版日期:2026-03-01 发布日期:2026-02-13
  • 通讯作者: 刘云坤
  • 作者简介:付莹欣,住院医师,学士,Email:fuyx0611@163.com
  • 基金资助:
    贵州省卫生健康委科学技术基金(gzwkj2025-457);贵州省教育厅高等学校自然科学研究项目(黔教技[2024]128号)

Progress in research on lactic acid and lactylation modification in oral squamous cell carcinoma

Yingxin Fu1,2(),Zhiyu Gu2,Ling Zhou2,Long Lin2,Jing Lin2,Yunkun Liu2()   

  1. 1.The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
    2.Stomatology Hospital Affiliated to Zunyi Medical University, Zunyi 563000, China
  • Received:2025-05-28 Revised:2025-07-28 Online:2026-03-01 Published:2026-02-13
  • Contact: Yunkun Liu
  • Supported by:
    Science and Technology Foundation of Guizhou Provincial Health Commission(gzwkj2025-457);Natural Science Research Project of Higher Education Institutions, Guizhou Provincial Department of Education([2024]128)

摘要:

乳酸作为葡萄糖无氧氧化产物,长期以来被认为是代谢废物。随着研究的深入,乳酸在细胞信号传导、代谢调节、免疫调节、能量代谢等方面发挥着重要作用。蛋白质乳酸化修饰是由乳酸介导的一种新型翻译后修饰,可直接改变蛋白质的化学结构与功能,刺激基因转录,改变细胞表型,参与多种疾病的发生发展。口腔鳞状细胞癌(OSCC)是头颈部最常见的恶性肿瘤之一,通过糖酵解途径产生大量乳酸,为肿瘤细胞提供能量和生物合成前体;乳酸通过介导表观遗传调控机制,影响肿瘤的发生进展。本文综述乳酸及蛋白质乳酸化修饰在OSCC发生发展过程中的研究进展,总结出靶向乳酸代谢及其修饰过程可作为OSCC潜在治疗策略,为代谢干预联合表观遗传治疗提供了新视角和理论依据。

关键词: 乳酸, 乳酸化修饰, 口腔鳞状细胞癌, 糖酵解, 乳酸脱氢酶, 表观遗传调控

Abstract:

Lactic acid, a product of anaerobic glycolysis, has long been considered a metabolic waste product. How-ever, recent advancements in lactic acid research have established its crucial roles in signal transduction, metabolic regulation, immune modulation, and energy metabolism. Protein lactylation, a novel post-translational modification mediated by lactic acid, can directly modify protein chemical structure and function, enhance gene transcription, mo-dulate cell phenotypes, and contribute to the pathogenesis of various diseases. Oral squamous cell carcinoma, a highly prevalent malignant tumor in the head and neck region, generates substantial amounts of lactic acid via the glycolytic pathway to fuel tumor cells and supply biosynthetic precursors. Furthermore, lactic acid affects tumorigenesis and progression by mediating epigenetic regulatory mechanisms. This review summarizes recent research progress on the roles of lactic acid and protein lactylation in the development and progression of oral squamous cell carcinoma. It not only reveals how lactate and lactylation influence tumorigenesis but also highlights that targeting lactate metabolism and its modification processes may serve as a potential therapeutic strategy for oral squamous cell carcinoma. Thus, this work offers a novel perspective and theoretical basis for metabolic interventions combined with epigenetic therapy.

Key words: lactic acid, lactylation modification, oral squamous cell carcinoma, glycolysis, lactate dehydrogenase, epigenetic regulation

中图分类号: 

  • R739.81
[1] Zhong XY, He XF, Wang YX, et al. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications[J]. J Hematol Oncol, 2022, 15(1): 160.
[2] Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism[J]. Nat Metab, 2020, 2(7): 566-571.
[3] Hu Y, He ZL, Li ZJ, et al. Lactylation: the novel histone modification influence on gene expression, protein function, and disease[J]. Clin Epigenetics, 2024, 16(1): 72.
[4] Arora R, Cao C, Kumar M, et al. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response[J]. Nat Commun, 2023, 14(1): 5029.
[5] Fan TF, Wang XN, Zhang S, et al. NUPR1 promotes the proliferation and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy[J]. Signal Transduct Target Ther, 2022, 7(1): 130.
[6] Panzarella V, Pizzo G, Calvino F, et al. Diagnostic delay in oral squamous cell carcinoma: the role of cognitive and psychological variables[J]. Int J Oral Sci, 2014, 6(1): 39-45.
[7] Ye L, Jiang Y, Zhang MM. Crosstalk between glucose metabolism, lactate production and immune response modulation[J]. Cytokine Growth Factor Rev, 2022, 68: 81-92.
[8] Apostolova P, Pearce EL. Lactic acid and lactate: revisiting the physiological roles in the tumor mi-croenvironment[J]. Trends Immunol, 2022, 43(12): 969-977.
[9] 葛演. 乳酸驱动PD-L1乳酸化修饰促进胃癌进展的机制研究[D]. 南京: 江苏大学, 2023.
Ge Y. Study on the mechanism of PD-L1 lactylation driven by lactate to promote gastric cancer progression[D]. Nanjing: Jiangsu University, 2023.
[10] Brooks GA. The science and translation of lactate shuttle theory[J]. Cell Metab, 2018, 27(4): 757-785.
[11] 陈怡霖, 朱萱萱, 倪志明, 等. 乳酸及乳酸化修饰对骨代谢影响的研究进展[J]. 中国骨质疏松杂志, 2024, 30(10): 1493-1498.
Chen YL, Zhu XX, Ni ZM, et al. Advances in the study of the effects of lactic acid and lactation mo-dification on bone metabolism[J]. Chin J Osteop, 2024, 30(10): 1493-1498.
[12] Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment[J]. Cancer Cell, 2023, 41(3): 404-420.
[13] Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing[J]. Signal Transduct Target Ther, 2020, 5(1): 166.
[14] Zheng Z, Ma XZ, Li HF. Circular RNA circMDM2 accelerates the glycolysis of oral squamous cell carcinoma by targeting miR-532-3p/HK2[J]. J Cell Mol Med, 2020, 24(13): 7531-7537.
[15] Lin J, Liu G, Chen LD, et al. Targeting lactate-rela-ted cell cycle activities for cancer therapy[J]. Semin Cancer Biol, 2022, 86(Pt 3): 1231-1243.
[16] Walenta S, Wetterling M, Lehrke M, et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers[J]. Cancer Res, 2000, 60(4): 916-921.
[17] Sun YQ, Chen Y, Zhao H, et al. Lactate-driven type Ⅰcollagen deposition facilitates cancer stem cell-like phenotype of head and neck squamous cell carcinoma[J]. iScience, 2024, 27(4): 109340.
[18] Gao CY, Li JL, Shan BE. Research progress on the regulatory role of lactate and lactylation in tumor microenvironment[J]. Biochim Biophys Acta Rev Cancer, 2025, 1880(3): 189339.
[19] Wu J, Hong Y, Wu T, et al. Stromal-epithelial lactate shuttle induced by tumor-derived interleukin-1β promotes cell proliferation in oral squamous cell carcinoma[J]. Int J Mol Med, 2018, 41(2): 687-696.
[20] Martinez-Outschoorn U, Sotgia F, Lisanti MP. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function[J]. Semin Oncol, 2014, 41(2): 195-216.
[21] Zhang SZ, Wang JJ, Chen Y, et al. CAFs-derived lactate enhances the cancer stemness through inhibi-ting the MST1 ubiquitination degradation in OSCC[J]. Cell Biosci, 2024, 14(1): 144.
[22] Llibre A, Kucuk S, Gope A, et al. Lactate: a key re-gulator of the immune response[J]. Immunity, 2025, 58(3): 535-554.
[23] Chen J, Huang ZY, Chen Y, et al. Lactate and lactylation in cancer[J]. Signal Transduct Target Ther, 2025, 10(1): 38.
[24] Qian J, Gong ZC, Zhang YN, et al. Lactic acid promotes metastatic niche formation in bone metastasis of colorectal cancer[J]. Cell Commun Signal, 2021, 19(1): 9.
[25] 周医雯, 姜伟, 朱海涛, 等. 乳酸在胰腺癌中的研究进展[J]. 中华胰腺病杂志, 2023, 23(2): 150-153.
Zhou YW, Jiang W, Zhu HT, et al. Research pro-gress on lactic acid in pancreatic cancer[J]. Chin J Pancreatol, 2023, 23(2): 150-153.
[26] 马丹宁, 魏泰, 韦金奇, 等. 乳酸对舌鳞癌细胞迁移和侵袭的影响及其机制初探[J]. 中华老年口腔医学杂志, 2024, 22(3): 129-133, 152.
Ma DN, Wei T, Wei JQ, et al. The effect of lactic acid on the migration and invasion ability of tongue squamous cell carcinoma cells and its preliminary mechanism investigation[J]. Chin J Geria Dent, 2024, 22(3): 129-133, 152.
[27] Jing FY, Zhu LJ, Zhang JY, et al. Multi-omics reveals lactylation-driven regulatory mechanisms promoting tumor progression in oral squamous cell carcinoma[J]. Genome Biol, 2024, 25(1): 272.
[28] Zhong Q, Xiao XN, Qiu YJ, et al. Protein posttranslational modifications in health and diseases: functions, regulatory mechanisms, and therapeutic implications[J]. Med Comm, 2023, 4(3): e261.
[29] Zhang D, Tang ZY, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580.
[30] Wan N, Wang N, Yu SQ, et al. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome[J]. Nat Methods, 2022, 19(7): 854-864.
[31] Zong Z, Ren J, Yang B, et al. Emerging roles of lysine lactyltransferases and lactylation[J]. Nat Cell Biol, 2025, 27(4): 563-574.
[32] Wang NX, Wang WW, Wang XQ, et al. Histone lactylation boosts reparative gene activation post-myocardial infarction[J]. Circ Res, 2022, 131(11): 893-908.
[33] Zhu RX, Ye XL, Lu XT, et al. ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion[J]. Cell Metab, 2025, 37(2): 361-376.e7.
[34] Zhai GJ, Niu ZP, Jiang ZX, et al. DPF2 reads histone lactylation to drive transcription and tumorige-nesis[J]. Proc Natl Acad Sci U S A, 2024, 121(50): e2421496121.
[35] Nuñez R, Sidlowski PFW, Steen EA, et al. The TRIM33 bromodomain recognizes histone lysine lactylation[J]. ACS Chem Biol, 2024, 19(12): 2418-2428.
[36] Fan ZM, Liu ZY, Zhang N, et al. Identification of SIRT3 as an eraser of H4K16la[J]. iScience, 2023, 26(10): 107757.
[37] Moreno-Yruela C, Zhang D, Wei W, et al. ClassⅠ histone deacetylases (HDAC1-3) are histone lysine delactylases[J]. Sci Adv, 2022, 8(3): eabi6696.
[38] Li HY, Liu C, Li R, et al. AARS1 and AARS2 sense L-lactate to regulate cGAS as global lysine lactyltransferases[J]. Nature, 2024, 634(8036): 1229-1237.
[39] Zong Z, Xie F, Wang S, et al. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransfe-rase that lactylates p53 and contributes to tumorigenesis[J]. Cell, 2024, 187(10): 2375-2392.e33.
[40] Hong H, Han HX, Wang L, et al. ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway[J]. Cell Death Differ, 2025, 32(4): 613-631.
[41] Li WH, Zhou C, Yu L, et al. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer[J]. Autophagy, 2024, 20(1): 114-130.
[42] Qiao YF, Liu YJ, Ran R, et al. Lactate metabolism and lactylation in breast cancer: mechanisms and implications[J]. Cancer Metastasis Rev, 2025, 44(2): 48.
[43] Tian QY, Li JJ, Wu B, et al. APP lysine 612 lactylation ameliorates amyloid pathology and memory decline in Alzheimer’s disease[J]. J Clin Invest, 2025, 135(1): e184656.
[44] Liu M, Yang Q, Zuo HY, et al. Dynamic patterns of histone lactylation during early tooth development in mice[J]. J Mol Histol, 2023, 54(6): 665-673.
[45] Zhai MR, Cui SY, Li L, et al. Mechanical force modulates alveolar bone marrow mesenchymal cells characteristics for bone remodeling during orthodontic tooth movement through lactate production[J]. Cells, 2022, 11(23): 3724.
[46] Wu Y, Gong P. Scopolamine regulates the osteo-genic differentiation of human periodontal liga-ment stem cells through lactylation modification of RUNX2 protein[J]. Pharmacol Res Perspect, 2024, 12(1): e1169.
[47] Li ZY, Gong T, Wu QR, et al. Lysine lactylation re-gulates metabolic pathways and biofilm formation in Streptococcus mutans [J]. Sci Signal, 2023, 16(801): eadg1849.
[48] Meng MY, Zhao XG, Zheng XY, et al. Lactate inhi-bits mouse embryonic palatal mesenchyme cells chondrogenesis through AKT-PKM2 axis[J]. BMC Oral Health, 2025, 25(1): 1289.
[49] Song F, Hou C, Huang YZ, et al. Lactylome analyses suggest systematic lysine-lactylated substrates in oral squamous cell carcinoma under normoxia and hypoxia[J]. Cell Signal, 2024, 120: 111228.
[50] Wang RJ, Li CW, Cheng ZY, et al. H3K9 lactylation in malignant cells facilitates CD8+ T cell dysfunction and poor immunotherapy response[J]. Cell Rep, 2024, 43(11): 114957.
[51] Miao SH, Lin L, Long MH, et al. H3 lysine 18 lactylation-mediated RRAS2 facilitates migration and invasion of head and neck squamous cell carcinoma[J]. Sci Rep, 2025, 15(1): 21282.
[52] Ren HW, Tang YW, Zhang D. The emerging role of protein L-lactylation in metabolic regulation and cell signalling[J]. Nat Metab, 2025, 7(4): 647-664.
[53] Faubert B, Solmonson A, DeBerardinis RJ. Metabo-lic reprogramming and cancer progression[J]. Scien-ce, 2020, 368(6487): eaaw5473.
[54] Pan LH, Feng F, Wu JQ, et al. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells[J]. Pharmacol Res, 2022, 181: 106270.
[55] Wang T, Ye Z, Li Z, et al. Lactate-induced protein lactylation: a bridge between epigenetics and metabolic reprogramming in cancer[J]. Cell Prolif, 2023, 56(10): e13478.
[56] Xiong J, He J, Zhu J, et al. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells[J]. Mol Cell, 2022, 82(9): 1660-1677.e10.
[57] Chen S, Huang GZ, Guo ZY, et al. Tumor-associa-ted Schwann cells promote salivary adenoid cystic carcinoma stem-like reprogramming via IGF2/IGF1-R induced histone H3 lysine 18 lactylation[J]. Cancer Lett, 2025, 628: 217847.
[58] Cai HS, Li JX, Zhang YD, et al. LDHA promotes oral squamous cell carcinoma progression through facilitating glycolysis and epithelial-mesenchymal transition[J]. Front Oncol, 2019, 9: 1446.
[59] Cui YM, Liu JW, Wang X, et al. Baicalin attenuates the immune escape of oral squamous cell carcinoma by reducing lactate accumulation in tumor microenvironment[J]. J Adv Res, 2025, 77: 721-732.
[60] Simões-Sousa S, Granja S, Pinheiro C, et al. Prognostic significance of monocarboxylate transporter expression in oral cavity tumors[J]. Cell Cycle, 2016, 15(14): 1865-1873.
[61] 汪婷婷, 何永文. 单羧酸转运蛋白家族介导乳酸转运在肿瘤发生发展中的作用[J]. 中国肿瘤临床, 2020, 47(7): 354-358.
Wang TT, He YW. Roles of monocarboxylate transporter-mediated lactate transport in tumors[J]. Chin J Clin Oncol, 2020, 47(7): 354-358.
[62] Jin Z, Yun L, Cheng P. Tanshinone I reprograms glycolysis metabolism to regulate histone H3 lysine 18 lactylation (H3K18la) and inhibits cancer cell grow-th in ovarian cancer[J]. Int J Biol Macromol, 2025, 291: 139072.
[63] Ouyang F, Li YL, Wang HM, et al. Aloe emodin alleviates radiation-induced heart disease via bloc-king P4HB lactylation and mitigating kynurenine metabolic disruption[J]. Adv Sci, 2024, 11(47): e2406026.
[64] Xiang TY, Wang XJ, Huang SJ, et al. Inhibition of PKM2 by shikonin impedes TGF-β1 expression by repressing histone lactylation to alleviate renal fibrosis[J]. Phytomedicine, 2025, 136: 156324.
[65] Chen QJ, Yang BH, Liu XC, et al. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents[J]. Theranostics, 2022, 12(11): 4935-4948.
[1] 张琳涵,汤亚玲. 拉曼光谱技术在口腔鳞状细胞癌和口腔潜在恶性疾病诊断和治疗中的应用进展[J]. 国际口腔医学杂志, 2026, 53(1): 107-115.
[2] 姚曼曼,仇永乐,刘铁军,路月亭,路华林,尚宏悦,董博. 微小RNA200a/141-信号转导和转录激活因子4轴在口腔鳞状细胞癌进展中的作用研究[J]. 国际口腔医学杂志, 2025, 52(4): 473-483.
[3] 王倩,彭晖,章礼玉,杨宗澄,王雨琪,潘宇,周瑜. 影像组学在口腔鳞状细胞癌颈部淋巴结转移方面的应用进展[J]. 国际口腔医学杂志, 2025, 52(4): 507-513.
[4] 李熠洁,原振英,李明. 支链氨基酸转氨酶1在口腔鳞状细胞癌中的表达及其功能研究[J]. 国际口腔医学杂志, 2025, 52(3): 358-365.
[5] 买克里亚·艾克帕尔,买买提吐逊·吐尔地. 吲哚菁绿荧光显影技术在口腔鳞状细胞癌手术治疗中的应用进展[J]. 国际口腔医学杂志, 2025, 52(3): 405-410.
[6] 卢妍蓓,李正娟,雷蕾,罗晶晶. 磷脂酰肌醇3激酶相关放射抵抗机制在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2025, 52(2): 246-256.
[7] 李京哲, 张素欣. 磷脂酰肌醇3-激酶/蛋白激酶B通路抑制剂在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2025, 52(1): 34-41.
[8] 李冰芷, 刘云坤, 王文轩, 侯泽宇, 唐金茹, 李龙江. 口腔鳞状细胞癌嗜神经侵袭的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 362-367.
[9] 胡雅瑄,马子涵,王将凌,汪永跃. 可降解新型聚乳酸膜在引导骨组织再生中的应用[J]. 国际口腔医学杂志, 2024, 51(2): 187-192.
[10] 王文轩,刘云坤,李冰芷,黄能文,侯泽宇,唐金茹,李龙江. 晚期糖基化终产物在口腔鳞状细胞癌发展及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 208-216.
[11] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[12] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[13] 吴佳敏,夏斌,杨禾丰,许彪. 癌相关成纤维细胞在口腔鳞状细胞癌微环境中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 711-717.
[14] 柳江龙, 买买提吐逊·吐尔地. 超声造影在口腔鳞状细胞癌颈部转移性淋巴结诊断中的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 514-520.
[15] 盛南宁,王珏,南欣荣. 性别决定基因盒9在口腔鳞状细胞癌作用机制和治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 314-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!