国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (5): 662-669.doi: 10.7518/gjkq.2025085

• 综述 • 上一篇    下一篇

正畸诱导性牙根吸收防治策略的研究进展

刘艺(),郑博文,刘奕()   

  1. 中国医科大学口腔医学院·附属口腔医院正畸教研室沈阳市口腔正畸疾病临床医学研究中心 沈阳 110002
  • 收稿日期:2024-08-02 修回日期:2024-12-02 出版日期:2025-09-01 发布日期:2025-08-27
  • 通讯作者: 刘奕
  • 作者简介:刘艺,博士,Email:yliu@cmu.edu.cn
  • 基金资助:
    辽宁省教育厅高校基本科研项目(LJKMZ20221190)

Advancements in prevention and treatment strategies for orthodontically induced root resorption

Yi Liu(),Bowen Zheng,Yi Liu()   

  1. Dept. of Orthodontics, School and Hospital of Stomatology, China Medical University, Shenyang Clinical Medical Research Center of Orthodontic Disease, Shenyang 110002, China
  • Received:2024-08-02 Revised:2024-12-02 Online:2025-09-01 Published:2025-08-27
  • Contact: Yi Liu
  • Supported by:
    Basic Scientific Research Project of Education Department of Liaoning Province(LJKMZ20221190)

摘要:

正畸诱导性牙根吸收(OIRR)是临床正畸治疗中最为常见的医源性不良反应之一,危害牙齿寿命,影响矫治效果。近年来,学者们通过体内外研究,通过物理方法、激素、药物、纳米靶向补充物及干细胞相关产物等多种方式,从促进牙骨质代谢、改变机械压力下牙骨质微环境等方面提出了新颖的OIRR应对方法,以期促进牙根修复,提高牙骨质矿化,缓解牙周损伤。其中,干细胞及相关产物或许成为揭示牙根吸收相关修复机制的新靶点。本文针对OIRR防治策略的最新进展作一总结,以期为临床治疗提供参考。

关键词: 正畸, 正畸诱导性牙根吸收, 牙骨质, 干细胞疗法

Abstract:

Orthodontically induced inflammatory root resorption (OIRR) is one of the most common iatrogenic complications associated with clinical orthodontic treatment, potentially compromising therapeutic outcomes and threatening tooth life. In recent years, various novel strategies have been proposed to mitigate OIRR by enhancing root repair, promo-ting cementum mineralization and minimizing periodontal damage. These emerging approaches aim to modulate cementum metabolism and the microenvironment under mechanical stress through in vitro and in vivo studies. Strategies include the application of physical therapies, hormones, pharmacological agents, nanotechnology-based targeting systems, and stem cell-derived products. Stem cells and their secreted byproducts have shown promise as therapeutic candidates for facilitating cementum regeneration and revealing underlying mechanisms of root resorption repair. This review summarizes recent advancements in the prevention and treatment of OIRR, providing a comprehensive reference for clinical applications and future research directions.

Key words: orthodontics, orthodontically induced inflammatory root resorption, cementum, stem cell therapy

中图分类号: 

  • R783.5

图 1

OIRR发生及修复相关因子/通路简图"

图2

OIRR防治策略机制简图"

[1] 韩行, 李颖辉, 李雯雯, 等. 机械力作用下牙周膜干细胞调控骨重塑的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 265-277.
Han X, Li YH, Li WW, et al. Periodontal ligament stem cells regulate bone remodeling under mechanical stress[J]. Int J Stomatol, 2024, 51(3): 265-277.
[2] Zheng WH, Lu XF, Chen GJ, et al. The osteoclastic activity in apical distal region of molar mesial roots affects orthodontic tooth movement and root resorption in rats[J]. Int J Oral Sci, 2024, 16(1): 19.
[3] Wang H, Li TC, Wang X, et al. Mechanisms of sphingosine-1-phosphate (S1P) signaling on excessive stress-induced root resorption during orthodontic molar intrusion[J]. Clin Oral Investig, 2022, 26(1): 1003-1016.
[4] Yassir YA, McIntyre GT, Bearn DR. Orthodontic treatment and root resorption: an overview of systematic reviews[J]. Eur J Orthod, 2021, 43(4): 442-456.
[5] Brezniak N, Wasserstein A. Orthodontically induced inflammatory root resorption. Part Ⅰ: the basic s-cience aspects[J]. Angle Orthod, 2002, 72(2): 175-179.
[6] Mann C, Cheng LL, Çolak C, et al. Physical properties of root cementum: part 28. Effects of high and low water fluoridation on orthodontic root resorption: a microcomputed tomography study[J]. Am J Orthod Dentofac Orthop, 2022, 162(2): 238-246.
[7] Yong JW, Gröger S, von Bremen J, et al. PD-L1, a potential immunomodulator linking immunology and orthodontically induced inflammatory root resorption (OIIRR): friend or foe[J]. Int J Mol Sci, 2022, 23(19): 11405.
[8] He D, Kou X, Luo Q, et al. Enhanced M1/M2 ma-crophage ratio promotes orthodontic root resorption[J]. J Dent Res, 2015, 94(1): 129-139.
[9] Dong XM, Feng J, Wen J, et al. Effect of interleukin-33 on cementoblast-mediated cementum repair during orthodontic tooth movement[J]. Arch Oral Biol, 2020, 112: 104663.
[10] Lim WH, Liu B, Hunter DJ, et al. Downregulation of Wnt causes root resorption[J]. Am J Orthod Dentofacial Orthop, 2014, 146(3): 337-345.
[11] Ma R, Xie XD, Xu CM, et al. Loss of β‑catenin causes cementum hypoplasia by hampering cementogenic differentiation of Axin2-expressing cells[J]. J Periodontal Res, 2023, 58(2): 414-421.
[12] Yong JW, Gröger S, von Bremen J, et al. Ciliary neurotrophic factor (CNTF) inhibits in vitro cemen-toblast mineralization and induces autophagy, in part by STAT3/ERK commitment[J]. Int J Mol Sci, 2022, 23(16): 9311.
[13] Yong JW, von Bremen J, Ruiz-Heiland G, et al. Adiponectin as well as compressive forces regulate in vitro β‑catenin expression on cementoblasts via mitogen-activated protein kinase signaling activation[J]. Front Cell Dev Biol, 2021, 9: 645005.
[14] Wang J, McVicar A, Chen YL, et al. Atp6i deficient mouse model uncovers transforming growth factor- β1/Smad2/3 as a key signaling pathway regulating odontoblast differentiation and tooth root formation[J]. Int J Oral Sci, 2023, 15(1): 35.
[15] Ye YS, Fang LL, Li J, et al. Chemerin/ChemR23 regulates cementoblast function and tooth resorption in mice via inflammatory factors[J]. J Periodontol, 2021, 92(10): 1470-1482.
[16] Liu ZF, Xu J, E LL, et al. Ultrasound enhances the healing of orthodontically induced root resorption in rats[J]. Angle Orthod, 2012, 82(1): 48-55.
[17] Wu T, Zheng F, Tang HY, et al. Low-intensity pulsed ultrasound reduces alveolar bone resorption during orthodontic treatment via Lamin A/C-Yes-associated protein axis in stem cells[J]. World J Stem Cells, 2024, 16(3): 267-286.
[18] Dalla-Bona DA, Tanaka E, Inubushi T, et al. Cementoblast response to low- and high-intensity ultrasound[J]. Arch Oral Biol, 2008, 53(4): 318-323.
[19] Inubushi T, Tanaka E, Rego EB, et al. Ultrasound stimulation attenuates resorption of tooth root induced by experimental force application[J]. Bone, 2013, 53(2): 497-506.
[20] El-Bialy T, Farouk K, Carlyle TD, et al. Effect of low intensity pulsed ultrasound (LIPUS) on tooth movement and root resorption: a prospective multi-center randomized controlled trial[J]. J Clin Med, 2020, 9(3): E804.
[21] Suzuki SS, Garcez AS, Reese PO, et al. Effects of corticopuncture (CP) and low-level laser therapy (LLLT) on the rate of tooth movement and root resorption in rats using micro-CT evaluation[J]. Lasers Med Sci, 2018, 33(4): 811-821.
[22] Vasconcelos EC, Henriques JFC, Sousa MVS, et al. Low-level laser action on orthodontically induced root resorption: histological and histomorphometric evaluation[J]. J Lasers Med Sci, 2016, 7(3): 146-151.
[23] Baser Keklikci H, Yagci A. Effects of different wavelengths of low-level laser therapy on orthodontically induced inflammatory root resorption in rats investigated with micro-computerized tomography[J]. Am J Orthod Dentofacial Orthop, 2021, 159(3): e245-e251.
[24] Ozturk T, Gul Amuk N. Effects of photobiomodulation at different wavelengths on orthodontically induced root resorption in orthodontic retention pe-riod: a micro-CT and RT-PCR study[J]. Lasers Med Sci, 2020, 35(6): 1419-1429.
[25] de Farias CS, Garcez AS, Teixeira LN, et al. In vitro effects of photobiomodulation on cell migration and gene expression of ALP, COL-1, RUNX-2, and osterix in cementoblasts[J]. Lasers Med Sci, 2023, 38(1): 121.
[26] Nasser AR, Sultan K, Hajeer MY, et al. Investiga-ting the effectiveness of low-level laser in reducing root resorption of the upper incisors during intrusion movement using mini-implants in adult patients with deep overbite: a randomized controlled clinical trial[J]. Cureus, 2023, 15(2): e35381.
[27] Shahid F, Nowrin SA, Alam MK, et al. Effects of low-level laser therapy and bracket systems on root resorption during orthodontic treatment: a rando-mized clinical trial[J]. Healthcare (Basel), 2023, 11(6): 864.
[28] Li YY, Hu ZA, Zhou CC, et al. Intermittent parathyroid hormone (PTH) promotes cementogenesis and alleviates the catabolic effects of mechanical strain in cementoblasts[J]. BMC Cell Biol, 2017, 18(1): 19.
[29] Cheng Y, Li F, Xiao XY, et al. Effects of intermittent parathyroid hormone on cementoblast-mediated periodontal repair[J]. Oral Dis, 2023, 29(4): 1747-1756.
[30] Li TC, Wang H, Lv CX, et al. Intermittent parathyroid hormone promotes cementogenesis via ephrinB2-EPHB4 forward signaling[J]. J Cell Physiol, 2021, 236(3): 2070-2086.
[31] Li TC, Wang H, Jiang YK, et al. LITTIP/Lgr6/HnRNPK complex regulates cementogenesis via Wnt signaling[J]. Int J Oral Sci, 2023, 15(1): 33.
[32] Nara Y, Kitaura H, Marahleh A, et al. Enhancement of orthodontic tooth movement and root resorption in ovariectomized mice[J]. J Dent Sci, 2022, 17(2): 984-990.
[33] Amaro ERS, Ortiz FR, Dorneles LS, et al. Estrogen protects dental roots from orthodontic-induced inflammatory resorption[J]. Arch Oral Biol, 2020, 117: 104820.
[34] Li TC, Zhou ZY, Wang H, et al. Effects of estrogen on root repair after orthodontically induced root resorption in ovariectomized rats[J]. Am J Orthod Dentofacial Orthop, 2020, 158(2): 247-263.e1.
[35] Ruiz-Heiland G, Yong JW, von Bremen J, et al. Leptin reduces in vitro cementoblast mineralization and survival as well as induces PGE2 release by ERK1/2 commitment[J]. Clin Oral Investig, 2021, 25(4): 1933-1944.
[36] Hu YJ, Liu WT, Liu ZJ, et al. Receptor activator of nuclear factor-kappa ligand, OPG, and IGF-Ⅰ expression during orthodontically induced inflammatory root resorption in the recombinant human growth hormone-treated rats[J]. Angle Orthod, 2015, 85(4): 562-569.
[37] Kirschneck C, Meier M, Bauer K, et al. Meloxicam medication reduces orthodontically induced dental root resorption and tooth movement velocity: a combined in vivo and in vitro study of dental-periodontal cells and tissue[J]. Cell Tissue Res, 2017, 368(1): 61-78.
[38] Mann C, Cheng LL, Ranjitkar S, et al. Comparison of surface roughness of root cementum and ortho-dontically induced root resorption craters from high- and low-fluoridation areas: a 3D confocal microscopy study[J]. Prog Orthod, 2022, 23(1): 20.
[39] Mann C, Cheng LL, Çolak C, et al. Physical properties of root cementum: part 28. Effects of high and low water fluoridation on orthodontic root resorption: a microcomputed tomography study[J]. Am J Orthod Dentofacial Orthop, 2022, 162(2): 238-246.
[40] Lim E, Belton D, Petocz P, et al. Physical properties of root cementum: part 15. Analysis of elemental composition by using proton-induced X-ray and gamma-ray emissions in orthodontically induced root resorption craters of rat molar cementum after exposure to systemic fluoride[J]. Am J Orthod Dentofacial Orthop, 2011, 139(2): e193-202.
[41] Wang ML, Fan JD, Wang AA, et al. Effect of local application of bone morphogenetic protein-2 on experimental tooth movement and biological remode-ling in rats[J]. Front Physiol, 2023, 14: 1111857.
[42] Sydorak I, Dang M, Baxter SJ, et al. Microsphere controlled drug delivery for local control of tooth movement[J]. Eur J Orthod, 2019, 41(1): 1-8.
[43] Navya S, Prashantha GS, Sabrish S, et al. Evaluation of the effect of local administration of PRP vs vitamin D3 on the rate of orthodontic tooth movement and the associated external apical root resorption[J]. J Oral Biol Craniofac Res, 2022, 12(6): 879-884.
[44] Sedaghati G, Feizbakhsh M, Esnaashari N, et al. Effect of local administration of injectable platelet-rich fibrin on root resorption during orthodontic tooth movement in dogs[J]. Dent Res J (Isfahan), 2023, 20: 118.
[45] Gul Amuk N, Kurt G, Karsli E, et al. Effects of mesenchymal stem cell transfer on orthodontically induced root resorption and orthodontic tooth movement during orthodontic arch expansion protocols: an experimental study in rats[J]. Eur J Orthod, 2020, 42(3): 305-316.
[46] Wei XQ, Guo SJ, Liu Q, et al. Dental follicle stem cells promote periodontal regeneration through pe-riostin-mediated macrophage infiltration and reprogramming in an inflammatory microenvironment[J]. Int J Mol Sci, 2023, 24(7): 6353.
[47] Zhao Y, Huang YP, Liu H, et al. Macrophages with different polarization phenotypes influence cementoblast mineralization through exosomes[J]. Stem Cells Int, 2022, 2022: 4185972.
[48] Huang X, Deng YF, Xiao JH, et al. Genetically engineered M2-like macrophage-derived exosomes for P. gingivalis-suppressed cementum regeneration: from mechanism to therapy[J]. Bioact Mater, 2023, 32: 473-487.
[49] Yang YH, Liu H, Guo KY, et al. Extracellular vesicles from compression-loaded cementoblasts promote the tissue repair function of macrophages[J]. Adv Sci (Weinh), 2024, 11(36): e2402529.
[1] 胡凯,张延晓,毛丙永,唐鑫,王跃岩,潘月,张秋香,崔树茂. 青少年正畸患者釉质脱矿的发生与口腔菌群及分泌型免疫球蛋白A的关系[J]. 国际口腔医学杂志, 2025, 52(5): 614-620.
[2] 任家银,游梦. 基于影像学证据的牙骨质—骨结构不良区域的种植考量[J]. 国际口腔医学杂志, 2025, 52(4): 421-427.
[3] 赵美林,赵依琼,黄姣. Ⅲ期C级牙周炎正畸患者上前牙龈乳头缺陷伴牙龈退缩1例[J]. 国际口腔医学杂志, 2025, 52(3): 333-340.
[4] 魏志,刘畅,王艳,赖文莉. 不同尺寸和材料的初始弓丝对正畸治疗中初始疼痛影响的系统评价与贝叶斯网状Meta分析[J]. 国际口腔医学杂志, 2025, 52(3): 366-379.
[5] 陆萌,陈文川,高一. 龈下牙体缺损修复中预防牙周疾病的策略[J]. 国际口腔医学杂志, 2025, 52(2): 238-245.
[6] 勾俊卓,朱亚芬,姜定卓,吴志芳. 替牙期正畸治疗对牙根发育影响的研究进展[J]. 国际口腔医学杂志, 2024, 51(6): 662-668.
[7] 潘珮玥,周婧,黄超,于乐,唐甜. 埋伏牙正畸治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(6): 669-676.
[8] 李榕,赵青. 基于颞下颌关节思考成人安氏Ⅱ2分类错 畸形的治疗[J]. 国际口腔医学杂志, 2024, 51(6): 687-698.
[9] 刘曼,孟耀,牛茂. 正畸复发研究领域中4种有前景的生物药物的研究进展[J]. 国际口腔医学杂志, 2024, 51(6): 699-705.
[10] 李娇娇,刘钧. 外伤牙早期固定正畸治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(4): 498-504.
[11] 陈梓柠,王浩,李倩雯,赵宁睿,王雪东. 种植钉支抗在口腔正畸领域的应用情况综述[J]. 国际口腔医学杂志, 2024, 51(3): 310-318.
[12] 李东娜, 翟浩嫣, 刘春艳. 牙周正畸联合治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(3): 326-336.
[13] 薛晴,齐慧川,胡敏. 机械应力下初级纤毛在骨和颞下颌关节软骨改建中力学感知作用的研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 201-207.
[14] 斯佳萍,吕林,王思婕,周宇,陈小燕. 不同类型的辅弓在正畸前牙压低中的应用与研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 241-248.
[15] 王楠楠,贺红,花放. 正畸相关釉质脱矿危险因素的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 91-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!