国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (2): 201-207.doi: 10.7518/gjkq.2024031

• 综述 • 上一篇    下一篇

机械应力下初级纤毛在骨和颞下颌关节软骨改建中力学感知作用的研究进展

薛晴(),齐慧川,胡敏()   

  1. 吉林大学口腔医院正畸科 长春 130021
  • 收稿日期:2023-06-27 修回日期:2023-11-10 出版日期:2024-03-01 发布日期:2024-03-11
  • 通讯作者: 胡敏
  • 作者简介:薛晴,硕士,Email:xueqing21@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金(82100956)

Research progress of primary cilia in bone remodelling and reconstruction of temporomandibular joint cartilage under mechanical stress

Qing Xue(),Huichuan Qi,Min Hu()   

  1. Dept. of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, ChinaCorrespordence: Hu Min, Email: humin@jlu. edu. cn
  • Received:2023-06-27 Revised:2023-11-10 Online:2024-03-01 Published:2024-03-11
  • Contact: Min Hu
  • Supported by:
    National Natural Science Foundation of China Youth Science Foundation Project(82100956)

摘要:

正畸治疗过程中的牙齿移动和颞下颌关节改建与生物力学息息相关,涉及到机械力作用下的骨重塑和软骨内稳态的维持。初级纤毛作为机械感受器,广泛存在于间充质干细胞、成骨细胞、骨细胞、软骨细胞等细胞表面,在机械应力下通过转导多种信号通路促进间充质干细胞的成骨向分化,维持成骨细胞的机械敏感性,促进骨基质的沉积,上调骨细胞的功能活动,间接调节破骨细胞的活性,促进软骨细胞的增殖分化及软骨内骨化等,在骨-软骨组织改建中发挥重要作用。本文对初级纤毛在机械应力下的牙槽骨改建和颞下颌关节软骨改建中的作用及相关分子机制的研究进展进行综述,为深入探讨正畸过程中骨和软骨组织的改建机制提供参考。

关键词: 初级纤毛, 机械转导, 正畸牙齿移动, 颞下颌关节

Abstract:

Tooth movement and temporomandibular joint remodelling during orthodontic treatment are typical biomechanical processes that involve bone remodelling and maintenance of cartilage homeostasis. Primary cilia are mechanoreceptors that widely exist on the surface of mesenchymal stem cells (MSCs), osteoblasts, osteocytes, chondrocytes, and other cells. Under mechanical stress, primary cilia could promote the osteogenic differentiation of MSCs and maintain the mechani-cal sensitivity of osteoblasts. Primary cilia could also promote the deposition of the bone matrix, upregulate the functional activity of osteocytes, and indirectly regulate the activity of osteoclasts. They promote the proliferation, differentiation, and endochondral ossification of chondrocytes by transducing multiple signalling pathways and thus play an important role in bone-cartilage tissue remodelling. This article aims to review the research progress of primary cilia in alveolar bone remodelling and reconstruction of temporomandibular joint cartilage. Relevant molecular mechanisms are discussed. This work provides a reference to further explore the mechanisms of bone and cartilage tissue remodelling during orthodontic treatment.

Key words: primary cilia, mechanotransduction, orthodontic tooth movement, temporomandibular joint

中图分类号: 

  • R783.5
1 Deng LZ, Chen YL, Guo JS, et al. Roles and mechanisms of YAP/TAZ in orthodontic tooth movement[J]. J Cell Physiol, 2021, 236(11): 7792-7800.
2 Qin L, Liu W, Cao HL, et al. Molecular mechanosensors in osteocytes[J]. Bone Res, 2020, 8: 23.
3 Teves ME, Strauss JF 3rd, Sapao P, et al. The primary cilium: emerging role as a key player in fibrosis[J]. Curr Rheumatol Rep, 2019, 21(6): 29.
4 Chinipardaz Z, Liu M, Graves DT, et al. Role of primary cilia in bone and cartilage[J]. J Dent Res, 2022, 101(3): 253-260.
5 Anvarian Z, Mykytyn K, Mukhopadhyay S, et al. Cellular signalling by primary cilia in development, organ function and disease[J]. Nat Rev Nephrol, 2019, 15(4): 199-219.
6 Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components[J]. Crit Rev Biochem Mol Biol, 2020, 55(2): 179-196.
7 Bangs F, Anderson KV. Primary cilia and mammalian hedgehog signaling[J]. Cold Spring Harb Perspect Biol, 2017, 9(5): a028175.
8 Yang N, Li L, Eguether T, Sundberg JP, et al. Intraflagellar transport 27 is essential for hedgehog signaling but dispensable for ciliogenesis during hair follicle morphogenesis[J]. Development, 2015, 142(12): 2194-2202.
9 Clement CA, Ajbro KD, Koefoed K, et al. TGF-β signaling is associated with endocytosis at the po-cket region of the primary cilium[J]. Cell Rep, 2013, 3(6): 1806-1814.
10 Lee KH. Involvement of Wnt signaling in primary cilia assembly and disassembly[J]. FEBS J, 2020, 287(23): 5027-5038.
11 Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies[J]. Nat Rev Mol Cell Biol, 2017, 18(9): 533-547.
12 Horani A, Ferkol TW. Understanding primary cilia-ry dyskinesia and other ciliopathies[J]. J Pediatr, 2021, 230: 15-22.e1.
13 Kaku M, Komatsu Y. Functional diversity of ciliary proteins in bone development and disease[J]. Curr Osteoporos Rep, 2017, 15(2): 96-102.
14 Tao DK, Xue H, Zhang CY, et al. The role of IFT140 in osteogenesis of adult mice long bone[J]. J Histochem Cytochem, 2019, 67(8): 601-611.
15 Kinumatsu T, Shibukawa Y, Yasuda T, et al. TMJ development and growth require primary cilia function[J]. J Dent Res, 2011, 90(8): 988-994.
16 Li Y, Zhan Q, Bao MY, et al. Biomechanical and bio-logical responses of periodontium in orthodontic tooth movement: up-date in a new decade[J]. Int J Oral Sci, 2021, 13(1): 20.
17 Labour MN, Riffault M, Christensen ST, et al. TGFβ1-induced recruitment of human bone mesenchymal stem cells is mediated by the primary cilium in a SMAD3-dependent manner[J]. Sci Rep, 2016, 6: 35542.
18 Lee MN, Song JH, Oh SH, et al. The primary cilium directs osteopontin-induced migration of mesenchymal stem cells by regulating CD44 signaling and Cdc-42 activation[J]. Stem Cell Res, 2020, 45: 101799.
19 Hoey DA, Tormey S, Ramcharan S, et al. Primary cilia-mediated mechanotransduction in human mesenchymal stem cells[J]. Stem Cells, 2012, 30(11): 2561-2570.
20 Corrigan MA, Ferradaes TM, Riffault M, et al. Ci-liotherapy treatments to enhance biochemically- and biophysically-induced mesenchymal stem cell osteogenesis: a comparison study[J]. Cell Mol Bioeng, 2019, 12(1): 53-67.
21 Johnson GP, Stavenschi E, Eichholz KF, et al. Mesenchymal stem cell mechanotransduction is cAMP dependent and regulated by adenylyl cyclase 6 and the primary cilium[J]. J Cell Sci, 2018, 131(21): jcs222737.
22 Corrigan MA, Johnson GP, Stavenschi E, et al. TRPV4-mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium[J]. Sci Rep, 2018, 8(1): 3824.
23 Jin SS, He DQ, Wang Y, et al. Mechanical force modulates periodontal ligament stem cell charac-teristics during bone remodelling via TRPV4[J]. Cell Prolif, 2020, 53(10): e12912.
24 Monnouchi S, Maeda H, Yuda A, et al. Mechanical induction of interleukin-11 regulates osteoblastic/cementoblastic differentiation of human periodontal ligament stem/progenitor cells[J]. J Periodontal Res, 2015, 50(2): 231-239.
25 Yuan X, Serra RA, Yang SY. Function and regulation of primary cilia and intraflagellar transport proteins in the skeleton[J]. Ann N Y Acad Sci, 2015, 1335(1): 78-99.
26 Li YH, Zhu D, Yang TY, et al. Crosstalk between the COX2-PGE2-EP4 signaling pathway and primary cilia in osteoblasts after mechanical stimulation[J]. J Cell Physiol, 2021, 236(6): 4764-4777.
27 Ehnert S, Sreekumar V, Aspera-Werz RH, et al. TGF-β1 impairs mechanosensation of human osteoblasts via HDAC6-mediated shortening and distortion of primary cilia[J]. J Mol Med (Berl), 2017, 95(6): 653-663.
28 Li YH, Zhu D, Cao ZB, et al. Primary cilia respond to intermittent low-magnitude, high-frequency vibration and mediate vibration-induced effects in osteoblasts[J]. Am J Physiol Cell Physiol, 2020, 318(1): C73-C82.
29 Lim J, Li XH, Yuan X, et al. Primary cilia control cell alignment and patterning in bone development via ceramide-PKCζ-β-catenin signaling[J]. Commun Biol, 2020, 3(1): 45.
30 Uda Y, Azab E, Sun NY, et al. Osteocyte mechanobiology[J]. Curr Osteoporos Rep, 2017, 15(4): 318-325.
31 Spasic M, Duffy MP, Jacobs CR. Fenoldopam sensitizes primary cilia-mediated mechanosensing to prom-ote osteogenic intercellular signaling and whole bone adaptation[J]. J Bone Miner Res, 2022, 37(5): 972-982.
32 Duffy MP, Sup ME, Guo XE. Adenylyl cyclase 3 regulates osteocyte mechanotransduction and primary cilium[J]. Biochem Biophys Res Commun, 2021, 573: 145-150.
33 Martín-Guerrero E, Tirado-Cabrera I, Buendía I, et al. Primary cilia mediate parathyroid hormone receptor type 1 osteogenic actions in osteocytes and osteoblasts via Gli activation[J]. J Cell Physiol, 2020, 235(10): 7356-7369.
34 Tirado-Cabrera I, Martin-Guerrero E, Heredero-Jimenez S, et al. PTH1R translocation to primary cilia in mechanically-stimulated ostecytes prevents osteoclast formation via regulation of CXCL5 and IL-6 secretion[J]. J Cell Physiol, 2022, 237(10): 3927-3943.
35 Ding D, Yang X, Luan HQ, et al. Pharmacological regulation of primary cilium formation affects the mechanosensitivity of osteocytes[J]. Calcif Tissue Int, 2020, 107(6): 625-635.
36 Kim JM, Lin CJ, Stavre Z, et al. Osteoblast-osteoclast communication and bone homeostasis[J]. Cells, 2020, 9(9): 2073.
37 Ono T, Nakashima T. Recent advances in osteoclast biology[J]. Histochem Cell Biol, 2018, 149(4): 325-341.
38 Shalish M, Will LA, Fukai, et al. Role of polycystin-1 in bone remodeling: orthodontic tooth movement study in mutant mice[J]. Angle Orthod, 2014, 84(5): 885-890.
39 Sánchez I, Dynlacht BD. Cilium assembly and disassembly[J]. Nat Cell Biol, 2016, 18(7): 711-717.
40 蒋思琪, 尹凤英, 张璠, 等. 初级纤毛对人牙周膜细胞成骨相关基因表达的影响[J]. 口腔医学研究, 2018, 34(1): 10-13.
Jiang SQ, Yin FY, Zhang F, et al. Effect of primary cilia on expression of osteogenic-related genes of human periodontal ligament cells[J]. J Oral Sci Res, 2018, 34(1): 10-13.
41 Chang PE, Li SJ, Kim HY, et al. BBS7-SHH signaling activity regulates primary cilia for periodontal homeostasis[J]. Front Cell Dev Biol, 2021, 9: 796274.
42 Tao FH, Jiang T, Tao H, et al. Primary cilia: versatile regulator in cartilage development[J]. Cell Prolif, 2020, 53(3): e12765.
43 Fu S, Meng H, Inamdar S, et al. Activation of TRPV4 by mechanical, osmotic or pharmaceutical stimulation is anti-inflammatory blocking IL-1β mediated articular cartilage matrix destruction[J]. Osteoarthritis Cartilage, 2021, 29(1): 89-99.
44 Kitami M, Yamaguchi H, Ebina M, et al. IFT20 is required for the maintenance of cartilaginous matrix in condylar cartilage[J]. Biochem Biophys Res Commun, 2019, 509(1): 222-226.
45 Salinas EY, Aryaei A, Paschos N, et al. Shear stress induced by fluid flow produces improvements in ti-ssue-engineered cartilage[J]. Biofabrication, 2020, 12(4): 045010.
46 Zhang ZY, Sa GL, Wang Z, et al. Piezo1 and IFT88 synergistically regulate mandibular condylar chondrocyte differentiation under cyclic tensile strain[J]. Tissue Cell, 2022, 76: 101781.
47 Zhang J, Zhang HY, Zhang M, et al. Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage[J]. Osteoarthritis Cartilage, 2014, 22(6): 822-830.
48 Thompson CL, Chapple JP, Knight MM. Primary cilia disassembly down-regulates mechanosensitive hedgehog signalling: a feedback mechanism controlling ADAMTS-5 expression in chondrocytes[J]. Osteoarthritis Cartilage, 2014, 22(3): 490-498.
49 He Z, Leong DJ, Zhuo Z, et al. Strain-induced mechanotransduction through primary cilia, extracellular ATP, purinergic calcium signaling, and ERK1/2 transactivates CITED2 and downregulates MMP-1 and MMP-13 gene expression in chondrocytes[J]. Osteoarthritis Cartilage, 2016, 24(5): 892-901.
50 Coveney CR, Samvelyan HJ, Miotla-Zarebska J, et al. Ciliary IFT88 protects coordinated adolescent growth plate ossification from disruptive physiological mechanical forces[J]. J Bone Miner Res, 2022, 37(6): 1081-1096.
51 Barsch F, Niedermair T, Mamilos A, et al. Physiological and pathophysiological aspects of primary cilia-a literature review with view on functional and structural relationships in cartilage[J]. Int J Mol Sci, 2020, 21(14): 4959.
52 Estell EG, Murphy LA, Silverstein AM, et al. Fibroblast-like synoviocyte mechanosensitivity to fluid shear is modulated by interleukin-1α[J]. J Biomech, 2017, 60: 91-99.
53 Fu S, Thompson CL, Ali A, et al. Mechanical loa-ding inhibits cartilage inflammatory signalling via an HDAC6 and IFT-dependent mechanism regulating primary cilia elongation[J]. Osteoarthritis Cartilage, 2019, 27(7): 1064-1074.
[1] 韩婧文,任诗琦,刘星宇,郎鑫,储梦诗,Waseem Saleh Abdo Kaid Algumaei,郑艳. 成人不同垂直及矢状骨面型髁突特征的研究[J]. 国际口腔医学杂志, 2022, 49(2): 153-162.
[2] 张哲,刘进,王卫红,陈志强,杨春,刘丽. 焦磷酸钙沉积症继发颞下颌关节脱位1例[J]. 国际口腔医学杂志, 2021, 48(6): 664-667.
[3] 殷晓丽,刘洋,王军. 伴发于偏颌畸形的颞下颌关节内部结构变化[J]. 国际口腔医学杂志, 2020, 47(5): 567-573.
[4] 林阳阳,侯敏. 双侧下颌支矢状骨劈开术对下颌近心骨段位移变化的影响[J]. 国际口腔医学杂志, 2019, 46(6): 718-723.
[5] 郭骏,费伟,李庆华. 创伤性颞下颌关节强直转归机制的动物研究[J]. 国际口腔医学杂志, 2019, 46(1): 12-19.
[6] 黎静, 刘星辰, 李佳园, 李小兵. 稳定咬合板治疗慢性颞下颌关节盘不可复性移位的临床随机对照试验的系统评价[J]. 国际口腔医学杂志, 2017, 44(4): 405-410.
[7] 刘洋, 赵翰驰. 前牙重度磨损伴关节弹响患者的咬合重建[J]. 国际口腔医学杂志, 2017, 44(1): 11-18.
[8] 胡欣欣,朱耀旻,郑苍尚. 特发性髁突吸收的研究进展[J]. 国际口腔医学杂志, 2016, 43(4): 412-416.
[9] 吕春晓 陈嵩. 颞下颌关节病的临床诊断与磁共振成像影像诊断的相关性研究[J]. 国际口腔医学杂志, 2016, 43(1): 47-.
[10] 杨文英1 张文丽1 罗应伟2. 颞下颌关节骨关节炎动物模型的研究进展[J]. 国际口腔医学杂志, 2015, 42(6): 677-680.
[11] 李放,王建国. 不同垂直骨面型安氏Ⅰ类成年患者颞下颌关节形态特征的锥形束CT研究[J]. 国际口腔医学杂志, 2015, 42(5): 538-541.
[12] 陈琦 吴芸. 肿痛安治疗癌症放射治疗后颞下颌关节疼痛的疗效评价[J]. 国际口腔医学杂志, 2015, 42(1): 24-27.
[13] 肖朋1 王兵1 黄旭1 刘海霞1 王虹2. 应激状态下大鼠咬肌活动性与颞下颌关节病变的相关性分析[J]. 国际口腔医学杂志, 2014, 41(4): 406-408.
[14] 姚君 刘从华. 锥形束CT在颞下颌关节结构定量研究中的作用[J]. 国际口腔医学杂志, 2014, 41(1): 52-56.
[15] 阴健1 廖爽1 张伟华2 何嘉3 王航1. 关节腔内注射氨基葡萄糖治疗兔颞下颌关节骨关节炎的组织学研究[J]. 国际口腔医学杂志, 2014, 41(1): 36-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .