国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (6): 763-771.doi: 10.7518/gjkq.2024096

• 综述 • 上一篇    

黑色素瘤缺乏因子2炎症小体在牙周炎及糖尿病中的研究进展

陈蕊(),范桢,郝春波()   

  1. 海南医科大学口腔医学院 海口 571199
  • 收稿日期:2024-01-05 修回日期:2024-05-30 出版日期:2024-11-01 发布日期:2024-11-04
  • 通讯作者: 郝春波
  • 作者简介:陈蕊,硕士,Email:2805904440@qq.com
  • 基金资助:
    海南省重点研发项目(ZDYF2022SHFZ017);海南省重点研发计划科技合作项目(ZDYF2019216);海南省高等学校科学研究项目(Hnky2019ZD-22);海南省高等学校教育教学改革研究项目(Hnjg2023ZD-29)

Research progress of absent in melanoma 2 inflammasome in periodontitis and diabetes

Rui Chen(),Zhen Fan,Chunbo Hao()   

  1. School of Stomatology, Hainan Medical University, Haikou 571199, China
  • Received:2024-01-05 Revised:2024-05-30 Online:2024-11-01 Published:2024-11-04
  • Contact: Chunbo Hao
  • Supported by:
    Key R & D Projects in Hainan Province(ZDYF2022SHF2017);Key R & D Program for Science and Technology Cooperation Project in Hainan Province(ZDYF2019216);Scientific Research Project of Hainan Higher Education Institutions(Hnky2019ZD-22);Hainan Province Higher Education and Teaching Reform Research Project(Hnjg2023ZD-29)

摘要:

黑色素瘤缺乏因子2(AIM2)炎症小体是由AIM2、凋亡相关斑点样蛋白及半胱天冬氨酸特异性蛋白酶1组成的大分子蛋白质复合物,活化后可释放白细胞介素-1β、白细胞介素-18等促炎细胞因子并诱导焦亡,在炎症性疾病的发生发展过程中有重要作用。目前的研究表明AIM2炎症小体的激活参与了牙周炎的发展,还可以直接或间接影响胰岛素信号通路的传导,从而参与糖尿病的发生发展。牙周炎与糖尿病互为双向关系,AIM2作为DNA传感器在牙周炎和糖尿病发生发展中所扮演的角色已经引起广泛关注。本文重点综述了AIM2炎症小体在两种疾病中的相关研究,并对AIM2炎症小体在两种疾病双向关系中的潜在机制进行探讨,为后续牙周炎和糖尿病的发病机制研究提供基础。

关键词: 黑色素瘤缺乏因子2炎症小体, 牙周炎, 糖尿病

Abstract:

The absent in melanoma 2 (AIM2) inflammasome is a large molecular protein complex composed of AIM2, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and cysteine-containing aspartate-specific protease-1 (Caspase-1). Upon activation, it can release pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18), as well as induce pyroptosis (a programmed cell death), thus playing a key role in the inflammatory response process. Inflammasome activation is also critical in the development of chronic inflammatory diseases. In recent years, the role of AIM2 as a DNA sensor in the development of periodontitis and diabetes has attracted extensive attention. Many studies have shown that the activation of AIM2 inflammasome is involved in the development of periodontitis. Some scholars have also reported that the activation of AIM2 inflammasome can directly or indirectly affect the conduction of the insulin signaling pathways, thereby participating in the occurrence and development of diabetes. While extensive research has established the bidirectional relationship between periodontitis and diabetes, there remains a paucity of knowledge regarding the potential impact of AIM2 inflammasome activation in the reciprocal association. This article focuses on related studies on AIM2 inflammasome in the two diseases and explores its potential mechanism in the bidirectional relationship, thus laying the foundation for subsequent research on the pathogenesis of periodontitis and diabetes.

Key words: absent in melanoma 2 inflammasome, periodontitis, diabetes

中图分类号: 

  • R781.4

图1

AIM2炎症小体的组装及激活"

1 Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities[J]. Nat Rev Immunol, 2021, 21(7): 426-440.
2 刘旭芳, 马雨轩, 牛丽娜. 线粒体功能障碍在牙周炎发生、发展及治疗中作用的研究进展[J]. 口腔疾病防治, 2023, 31(12): 889-895.
Liu XF, Ma YX, Niu LN. Research progress on the role of mitochondrial dysfunction in the occurrence, progression and treatment of periodontitis[J]. J Prev Treat Stomatol Dis, 2023, 31(12): 889-895.
3 de Candia P, Prattichizzo F, Garavelli S, et al. Type 2 diabetes: how much of an autoimmune disease[J]. Front Endocrinol, 2019, 10: 451.
4 Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications[J]. Nat Rev Nephrol, 2020, 16(7): 377-390.
5 Donath MY, Dinarello CA, Mandrup-Poulsen T. Targeting innate immune mediators in type 1 and type 2 diabetes[J]. Nat Rev Immunol, 2019, 19(12): 734-746.
6 Păunică I, Giurgiu M, Dumitriu AS, et al. The bidirectional relationship between periodontal disease and diabetes mellitus-a review[J]. Diagnostics, 2023, 13(4): 681.
7 Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis[J]. Periodontol 2000, 2015, 69(1): 7-17.
8 Polak D, Shapira L. An update on the evidence for pathogenic mechanisms that may link periodontitis and diabetes[J]. J Clin Periodontol, 2018, 45(2): 150-166.
9 Fan Z, Chen R, Yin W, et al. Effects of AIM2 and IFI16 on infectious diseases and inflammation[J]. Viral Immunol, 2023, 36(7): 438-448.
10 Crump KE, Sahingur SE. Microbial nucleic acid sensing in oral and systemic diseases[J]. J Dent Res, 2016, 95(1): 17-25.
11 Wang B, Tian Y, Yin Q. AIM2 inflammasome assembly and signaling[J]. Adv Exp Med Biol, 2019, 1172: 143-155.
12 Cridland JA, Curley EZ, Wykes MN, et al. The mammalian PYHIN gene family: phylogeny, evolution and expression[J]. BMC Evol Biol, 2012, 12: 140.
13 Wang B, Bhattacharya M, Roy S, et al. Immunobio-logy and structural biology of AIM2 inflammasome[J]. Mol Aspects Med, 2020, 76: 100869.
14 Jin TC, Perry A, Jiang JS, et al. Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor[J]. Immunity, 2012, 36(4): 561-571.
15 Sharma BR, Karki R, Kanneganti TD. Role of AIM2 inflammasome in inflammatory diseases, cancer and infection[J]. Eur J Immunol, 2019, 49(11): 1998-2011.
16 Man SM, Karki R, Kanneganti TD. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity[J]. Eur J Immunol, 2016, 46(2): 269-280.
17 Ma Z, Ni GX, Damania B. Innate sensing of DNA virus genomes[J]. Annu Rev Virol, 2018, 5(1): 341-362.
18 Man SM, Karki R, Sasai MW, et al. IRGB10 libe-rates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes[J]. Cell, 2016, 167(2): 382-396.e17.
19 Man SM, Karki R, Subbarao Malireddi RK, et al. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection[J]. Nat Immunol, 2015, 16(5): 467-475.
20 Meunier E, Wallet P, Dreier RF, et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida [J]. Nat Immunol, 2015, 16(5): 476-484.
21 Broz P, Pelegrín P, Shao F. The gasdermins, a protein family executing cell death and inflammation[J]. Nat Rev Immunol, 2020, 20(3): 143-157.
22 Forouzandeh M, Besen J, Keane RW, et al. The inflammasome signaling proteins ASC and IL-18 as biomarkers of psoriasis[J]. Front Pharmacol, 2020, 11: 1238.
23 Fan XJ, Jiao LY, Jin TC. Activation and immune regulation mechanisms of PYHIN family during microbial infection[J]. Front Microbiol, 2022, 12: 809412.
24 Marchesan JT, Girnary MS, Moss K, et al. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics[J]. Periodontol 2000, 2020, 82(1): 93-114.
25 Park E, Na HS, Song YR, et al. Activation of NLRP3 and AIM2 inflammasomes by Porphyromonas gingivalis infection[J]. Infect Immun, 2014, 82(1): 112-123.
26 Bostanci N, Meier A, Guggenheim B, et al. Regulation of NLRP3 and AIM2 inflammasome gene expression levels in gingival fibroblasts by oral biofilms[J]. Cell Immunol, 2011, 270(1): 88-93.
27 Belibasakis GN, Guggenheim B, Bostanci N. Down-regulation of NLRP3 inflammasome in gingival fibroblasts by subgingival biofilms: involvement of Porphyromonas gingivalis [J]. Innate Immun, 2013, 19(1): 3-9.
28 Sahingur SE, Xia XJ, Voth SC, et al. Increased nucleic acid receptor expression in chronic periodontitis[J]. J Periodontol, 2013, 84(10): e48-e57.
29 Xue F, Shu R, Xie YF. The expression of NLRP3, NLRP1 and AIM2 in the gingival tissue of periodontitis patients: RT-PCR study and immunohistoche-mistry[J]. Arch Oral Biol, 2015, 60(6): 948-958.
30 Aral K, Berdeli E, Cooper PR, et al. Differential expression of inflammasome regulatory transcripts in periodontal disease[J]. J Periodontol, 2020, 91(5): 606-616.
31 Marchesan JT, Jiao YZ, Moss K, et al. Common polymorphisms in IFI16 and AIM2 genes are asso-ciated with periodontal disease[J]. J Periodontol, 2017, 88(7): 663-672.
32 Li WJ, Zheng QW, Meng HX, et al. Integration of genome-wide association study and expression quantitative trait loci data identifies AIM2 as a risk gene of periodontitis[J]. J Clin Periodontol, 2020, 47(5): 583-593.
33 Lu S, Li YR, Qian ZJ, et al. Role of the inflammasome in insulin resistance and type 2 diabetes mellitus[J]. Front Immunol, 2023, 14: 1052756.
34 Cataño Cañizales YG, Uresti Rivera EE, García Jacobo RE, et al. Increased levels of AIM2 and circulating mitochondrial DNA in type 2 diabetes[J]. Iran J Immunol, 2018, 15(2): 142-155.
35 Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes[J]. Science, 2005, 307(5708): 384-387.
36 Bae JH, Jo SI, Kim SJ, et al. Circulating cell-free mtDNA contributes to AIM2 inflammasome-media-ted chronic inflammation in patients with type 2 diabetes[J]. Cells, 2019, 8(4): 328.
37 Hsu CC, Fidler TP, Kanter JE, et al. Hematopoietic NLRP3 and AIM2 inflammasomes promote diabetes-accelerated atherosclerosis, but increased necrosis is independent of pyroptosis[J]. Diabetes, 2023, 72(7): 999-1011.
38 Li H, Yang H, Ding Y, et al. Experimental periodontitis induced by Porphyromonas gingivalis does not alter the onset or severity of diabetes in mice[J]. J Periodontal Res, 2013, 48(5): 582-590.
39 杨炳涛, 徐菁玲, 和璐, 等. 伴糖尿病牙周炎患者牙龈卟啉单胞菌FimA基因型的检测[J]. 中华口腔医学杂志, 2016, 51(1): 20-24.
Yang BT, Xu JL, He L, et al. Porphyromonas gingivalis FimA genotype distribution among periodontitis patients with type 2 diabetes[J]. Chin J Stomatol, 2016, 51(1): 20-24.
40 Ran SJ, Liu B, Gu SS, et al. Analysis of the expression of NLRP3 and AIM2 in periapical lesions with apical periodontitis and microbial analysis outside the apical segment of teeth[J]. Arch Oral Biol, 2017, 78: 39-47.
41 Arunachalam LT, Suresh S, Lavu V, et al. Association of salivary levels of DNA sensing inflammasomes AIM2, IFI16, and cytokine IL18 with perio-dontitis and diabetes[J]. J Periodontol, 2024, 95(2): 114-124.
42 Chen H, Peng LM, Wang ZX, et al. Exploration of cross-talk and pyroptosis-related gene signatures and molecular mechanisms between periodontitis and diabetes mellitus via peripheral blood mononuclear cell microarray data analysis[J]. Cytokine, 2022, 159: 156014.
43 Nie L, Zhao PF, Yue ZQ, et al. Diabetes induces macrophage dysfunction through cytoplasmic ds-DNA/AIM2 associated pyroptosis[J]. J Leukoc Biol, 2021, 110(3): 497-510.
44 Zhang P, Lu BY, Zhu R, et al. Hyperglycemia acce-lerates inflammaging in the gingival epithelium through inflammasomes activation[J]. J Periodontal Res, 2021, 56(4): 667-678.
45 Sahingur SE, Xia XJ, Schifferle RE. Oral bacterial DNA differ in their ability to induce inflammatory responses in human monocytic cell lines[J]. J Perio-dontol, 2012, 83(8): 1069-1077.
46 Kim Y, Jo AR, Jang DH, et al. Toll-like receptor 9 mediates oral bacteria-induced IL-8 expression in gingival epithelial cells[J]. Immunol Cell Biol, 2012, 90(6): 655-663.
47 Silva LM, Doyle AD, Greenwell-Wild T, et al. Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier[J]. Science, 2021, 374(6575): eabl5450.
48 Lopes DEM, Jabr CL, Dejani NN, et al. Inhibition of 5-lipoxygenase attenuates inflammation and bone resorption in lipopolysaccharide-induced periodontal disease[J]. J Periodontol, 2017. doi: 10.1902/jop.2017.170210 .
doi: 10.1902/jop.2017.170210
49 Huang HY, Pan WY, Wang YF, et al. Nanoparticulate cell-free DNA scavenger for treating inflammatory bone loss in periodontitis[J]. Nat Commun, 2022, 13(1): 5925.
50 Zhu XZ, Chu CJ, Pan WY, et al. The correlation between periodontal parameters and cell-free DNA in the gingival crevicular fluid, saliva, and plasma in Chinese patients: a cross-sectional study[J]. J Clin Med, 2022, 11(23): 6902.
51 Viglianisi G, Santonocito S, Polizzi A, et al. Impact of circulating cell-free DNA (cfDNA) as a biomar-ker of the development and evolution of periodontitis[J]. Int J Mol Sci, 2023, 24(12): 9981.
52 Wang JY, Zhou YC, Ren B, et al. The role of neutrophil extracellular traps in periodontitis[J]. Front Cell Infect Microbiol, 2021, 11: 639144.
53 Carestia A, Frechtel G, Cerrone G, et al. NETosis before and after hyperglycemic control in type 2 diabetes mellitus patients[J]. PLoS One, 2016, 11(12): e0168647.
54 Górska R, Gregorek H, Kowalski J, et al. Relationship between clinical parameters and cytokine profiles in inflamed gingival tissue and serum samples from patients with chronic periodontitis[J]. J Clin Periodontol, 2003, 30(12): 1046-1052.
55 Leung OM, Li JT, Li XS, et al. Regulatory T cells promote apelin-mediated sprouting angiogenesis in type 2 diabetes[J]. Cell Rep, 2018, 24(6): 1610-1626.
56 Choubaya C, Chahine N, Aoun G, et al. Expression of inflammatory mediators in periodontitis over established diabetes: an experimental study in rats[J]. Med Arch, 2021, 75(6): 436-443.
57 Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases[J]. Blood, 2011, 117(14): 3720-3732.
58 Fischer CP, Perstrup LB, Berntsen A, et al. Elevated plasma interleukin-18 is a marker of insulin-resistance in type 2 diabetic and non-diabetic humans[J]. Clin Immunol, 2005, 117(2): 152-160.
59 Pradeep AR, Daisy H, Hadge P, et al. Correlation of gingival crevicular fluid interleukin-18 and monocyte chemoattractant protein-1 levels in periodontal health and disease[J]. J Periodontol, 2009, 80(9): 1454-1461.
60 Banu S, Jabir NR, Mohan R, et al. Correlation of Toll-like receptor 4, interleukin-18, transaminases, and uric acid in patients with chronic periodontitis and healthy adults[J]. J Periodontol, 2015, 86(3): 431-439.
61 Bostanci N, Emingil G, Saygan B, et al. Expression and regulation of the NALP3 inflammasome complex in periodontal diseases[J]. Clin Exp Immunol, 2009, 157(3): 415-422.
62 Song L, Dong G, Guo L, et al. The function of dendritic cells in modulating the host response[J]. Mol Oral Microbiol, 2018, 33(1): 13-21.
63 Papathanasiou E, Teles F, Griffin T, et al. Gingival crevicular fluid levels of interferon-γ, but not interleukin-4 or-33 or thymic stromal lymphopoietin, are increased in inflamed sites in patients with periodontal disease[J]. J Periodontal Res, 2014, 49(1): 55-61.
64 Monteleone M, Stow JL, Schroder K. Mechanisms of unconventional secretion of IL-1 family cytokines[J]. Cytokine, 2015, 74(2): 213-218.
65 Chan AH, Schroder K. Inflammasome signaling and regulation of interleukin-1 family cytokines[J]. J Exp Med, 2020, 217(1): e20190314.
66 Fernandes-Alnemri T, Yu JW, Datta P, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA[J]. Nature, 2009, 458(7237): 509-513.
67 Noonin C, Thongboonkerd V. Exosome-inflammasome crosstalk and their roles in inflammatory responses[J]. Theranostics, 2021, 11(9): 4436-4451.
68 Liu W, Liu J, Wang W, et al. NLRP6 induces pyroptosis by activation of caspase-1 in gingival fibroblasts[J]. J Dent Res, 2018, 97(12): 1391-1398.
69 Ning WC, Acharya A, Li SM, et al. Identification of key pyroptosis-related genes and distinct pyroptosis-related clusters in periodontitis[J]. Front Immunol, 2022, 13: 862049.
70 Zhao PF, Yue ZQ, Nie L, et al. Hyperglycaemia-associated macrophage pyroptosis accelerates perio-dontal inflamm-aging[J]. J Clin Periodontol, 2021, 48(10): 1379-1392.
[1] 陈梦洁,徐文华,刘青青,康毓聃,刘蓉,朱丽雷. 全身免疫炎症指数与牙周炎患者分级诊断的相关性研究[J]. 国际口腔医学杂志, 2024, 51(6): 706-712.
[2] 毛鸿晨,王铮,杨德琴. 牙龈卟啉单胞菌外膜囊泡在口腔疾病中的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 608-615.
[3] 漆美瑶,祁星颖,周欣奕,谭震,袁泉. 大麻二酚联合米诺环素对牙周炎治疗作用的实验研究[J]. 国际口腔医学杂志, 2024, 51(4): 392-400.
[4] 陈梦洁, 刘小乐, 朱丽雷. 牙周炎患者牙周支持治疗对血细胞指标影响的回顾性研究[J]. 国际口腔医学杂志, 2024, 51(4): 401-405.
[5] 马玉, 左玉, 刘建华. 抗菌光动力疗法与全身抗菌药物辅助治疗牙周炎疗效比较的Meta分析[J]. 国际口腔医学杂志, 2024, 51(4): 406-415.
[6] 刘诗礼, 赵蕾. 牙周炎与心力衰竭相关性的研究进展[J]. 国际口腔医学杂志, 2024, 51(4): 425-432.
[7] 杨再目,曹沛,刘振华,栾庆先. 血浆无细胞线粒体外线粒体DNA与牙周炎临床指标的相关性研究[J]. 国际口腔医学杂志, 2024, 51(3): 288-295.
[8] 马瑜鸿,赵蕾. 微创非手术牙周治疗技术的临床研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 227-232.
[9] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[10] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[11] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[12] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[13] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[14] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[15] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!