国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (1): 10-20.doi: 10.7518/gjkq.2024019

• 口腔肿瘤学专栏 • 上一篇    下一篇

基于胱氨酸-谷氨酸反向转运体的抗肿瘤代谢治疗新策略

王苗(),孟婉蓉,李龙江()   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心四川大学华西口腔医院头颈肿瘤外科 成都 610041
  • 收稿日期:2023-04-08 修回日期:2023-07-30 出版日期:2024-01-01 发布日期:2024-01-10
  • 通讯作者: 李龙江
  • 作者简介:王苗,博士,Email:wangm6360@163.com
  • 基金资助:
    国家自然科学基金(81972538)

The new strategies of antimetabolic therapy of cancers based on antiporter of cystine and glutamate

Wang Miao(),Meng Wanrong,Li Longjiang()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-04-08 Revised:2023-07-30 Online:2024-01-01 Published:2024-01-10
  • Contact: Longjiang Li
  • Supported by:
    National Natural Science Foundation of China(81972538)

摘要:

代谢重编程是恶性肿瘤的重要特征之一,是促使肿瘤细胞在营养匮乏的情况下存活并促进其恶性进展的重要原因。近些年研究发现,胱氨酸-谷氨酸反向转运体(system Xc-)不仅是诱导铁死亡的关键靶点,同时对肿瘤代谢起重要调控作用,该转运体是导致肿瘤细胞对葡萄糖高度依赖的原因之一,这提示对于高表达system Xc-的肿瘤,抑制葡萄糖摄取及糖代谢是一种有效的治疗策略。本文从system Xc-的表达调控、功能及其对肿瘤代谢的影响等方面进行综述,以期为抗肿瘤代谢治疗提供新思路。

关键词: 代谢重编程, 胱氨酸-谷氨酸反向转运体, 谷氨酰胺, 还原型烟酰胺腺嘌呤二核苷酸磷酸

Abstract:

Metabolism reprogram is one of the major characteristics of malignant cancer. It promotes survival of tumor cells and launches the malignant progression of cancers under the nutrition-deficient tumor milieu. Several recent studies have revealed that the antiporter of cystine and glutamine, system Xc, is a key target of ferroptosis and also impairs flexibility of tumor metabolism remolding and promotes dependency on glucose. This finding indicates that interfering glucose uptake and glucose metabolism are potential methods of treating system Xc overexpression cancers. This review summarizes the expressional regulation and metabolic functions of system Xc, thereby paving a new avenue for the antimetabolic therapy of cancers.

Key words: metabolism reprogram, antiporter of cystine and glutamate, glutamine, reduced nicotinamide adenine dinucleotide phosphate

中图分类号: 

  • R782

图 1

xCT的转录调控"

图2

xCT的表观调控"

图3

CD98的表达调控"

图4

胱氨酸-谷氨酸反向转运体system Xc-与谷氨酰胺代谢、NADPH代谢和葡萄糖代谢的关系"

1 Parker JL, Deme JC, Kolokouris D, et al. Molecular basis for redox control by the human cystine/glutamate antiporter system xc[J]. Nat Commun, 2021, 12(1): 7147.
2 Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
3 Jiang XJ, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
4 Shin CS, Mishra P, Watrous JD, et al. The glutamate/cystine xCT antiporter antagonizes glutamine meta-bolism and reduces nutrient flexibility[J]. Nat Commun, 2017, 8: 15074.
5 Stine ZE, Walton ZE, Altman BJ, et al. MYC, metabolism, and cancer[J]. Cancer Discov, 2015, 5(10): 1024-1039.
6 Dey P, Kimmelman AC, DePinho RA. Metabolic codependencies in the tumor microenvironment[J]. Cancer Discov, 2021, 11(5): 1067-1081.
7 Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression[J]. Semin Cancer Biol, 2022, 85: 4-32.
8 Liu J, Xia X, Huang P. xCT: a critical molecule that links cancer metabolism to redox signaling[J]. Mol Ther, 2020, 28(11): 2358-2366.
9 Abdullah M, Lee SJ. Extracellular concentration of L-cystine determines the sensitivity to system xc - inhibitors[J]. Biomol Ther, 2022, 30(2): 184-190.
10 Yan RH, Zhao X, Lei JL, et al. Structure of the human LAT1-4F2hc heteromeric amino acid transpor-ter complex[J]. Nature, 2019, 568(7750): 127-130.
11 Lewerenz J, Sato H, Albrecht P, et al. Mutation of ATF4 mediates resistance of neuronal cell lines against oxidative stress by inducing xCT expression[J]. Cell Death Differ, 2012, 19(5): 847-858.
12 Fan Z, Wirth AK, Chen D, et al. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis[J]. Oncogenesis, 2017, 6(8): e371.
13 Byles V, Cormerais Y, Kalafut K, et al. Hepatic mTORC1 signaling activates ATF4 as part of its metabolic response to feeding and insulin[J]. Mol Metab, 2021, 53: 101309.
14 Quirós PM, Prado MA, Zamboni N, et al. Multio-mics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals[J]. J Cell Biol, 2017, 216(7): 2027-2045.
15 Feng L, Li M, Hu X, et al. CK1δ stimulates ubiquitination-dependent proteasomal degradation of ATF4 to promote chemoresistance in gastric cancer[J]. Clin Transl Med, 2021, 11(10): e587.
16 Longchamp A, Mirabella T, Arduini A, et al. Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production[J]. Cell, 2018, 173(1): 117-129.e14.
17 Chang H, Cai F, Zhang Y, et al. Early-stage autophagy protects nucleus pulposus cells from glucose deprivation-induced degeneration via the p-eIF2α/ATF4 pathway[J]. Biomed Pharmacother, 2017, 89: 529-535.
18 Loong JH, Wong TL, Tong M, et al. Glucose deprivation-induced aberrant FUT1-mediated fucosyla-tion drives cancer stemness in hepatocellular carcinoma[J]. J Clin Invest, 2021, 131(11): e143377.
19 Balsa E, Soustek MS, Thomas A, et al. ER and nu-trient stress promote assembly of respiratory chain super complexes through the PERK-eIF2α axis[J]. Mol Cell, 2019, 74(5): 877-890.e6.
20 Ye JB, Kumanova M, Hart LS, et al. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation[J]. EMBO J, 2010, 29(12): 2082-2096.
21 Koppula P, Zhang YL, Shi JJ, et al. The glutamate/cystine antiporter SLC7A11/xCT enhances cancer cell dependency on glucose by exporting glutamate[J]. J Biol Chem, 2017, 292(34): 14240-14249.
22 Sato H, Nomura S, Maebara K, et al. Transcriptio-nal control of cystine/glutamate transporter gene by amino acid deprivation[J]. Biochem Biophys Res Commun, 2004, 325(1): 109-116.
23 Ma Q. Role of nrf2 in oxidative stress and toxicity[J]. Annu Rev Pharmacol Toxicol, 2013, 53: 401-426.
24 Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update[J]. Free Radic Biol Med, 2014, 66: 36-44.
25 Habib E, Linher-Melville K, Lin HX, et al. Expression of xCT and activity of system xc(-) are regula-ted by NRF2 in human breast cancer cells in response to oxidative stress[J]. Redox Biol, 2015, 5: 33-42.
26 Lim JKM, Leprivier G. The impact of oncogenic RAS on redox balance and implications for cancer development[J]. Cell Death Dis, 2019, 10(12): 955.
27 Lim JKM, Delaidelli A, Minaker SW, et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenic RAS transformation by preserving intracellular redox balance[J]. Proc Natl Acad Sci U S A, 2019, 116(19): 9433-9442.
28 Wu C, Shen Z, Lu Y, et al. p53 promotes ferroptosis in macrophages treated with Fe3O4 nanoparticles[J]. ACS Appl Mater Interfaces, 2022, 14(38): 42791-42803.
29 Fu DZ, Wang CX, Yu L, et al. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling[J]. Cell Mol Biol Lett, 2021, 26(1): 26.
30 Wang LY, Liu YC, Du TT, et al. ATF3 promotes erastin-induced ferroptosis by suppressing system Xc[J]. Cell Death Differ, 2020, 27(2): 662-675.
31 Liu SJ, Trejo-Arellano MS, Qiu YC, et al. H2A ubiquitination is essential for polycomb repressive complex 1-mediated gene regulation in marchantia polymorpha[J]. Genome Biol, 2021, 22(1): 253.
32 Fierz B, Chatterjee C, McGinty RK, et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction[J]. Nat Chem Biol, 2011, 7(2): 113-119.
33 Zhang YL, Koppula P, Gan BY. Regulation of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1[J]. Cell Cycle, 2019, 18(8): 773-783.
34 Wang YF, Yang L, Zhang XJ, et al. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53[J]. EMBO Rep, 2019, 20(7): e47563.
35 Wu C, Cui YQ, Liu XH, et al. The RNF20/40 complex regulates p53-dependent gene transcription and mRNA splicing[J]. J Mol Cell Biol, 2020, 12(2): 113-124.
36 Minsky N, Oren M. The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression[J]. Mol Cell, 2004, 16(4): 631-639.
37 Cole AJ, Dickson KA, Liddle C, et al. Ubiquitin chromatin remodelling after DNA damage is associa-ted with the expression of key cancer genes and pathways[J]. Cell Mol Life Sci, 2021, 78(3): 1011-1027.
38 Lee SY, Kim HS, Kim MJ, et al. Glutamine metabolite α-ketoglutarate acts as an epigenetic co-factor to interfere with osteoclast differentiation[J]. Bone, 2021, 145: 115836.
39 Sui SY, Zhang J, Xu SP, et al. Ferritinophagy is required for the induction of ferroptosis by the bromodomain protein BRD4 inhibitor (+)-JQ1 in cancer cells[J]. Cell Death Dis, 2019, 10(5): 331.
40 Ogiwara H, Takahashi K, Sasaki M, et al. Targeting the vulnerability of glutathione metabolism in ARID1A-deficient cancers[J]. Cancer Cell, 2019, 35(2): 177-190.e8.
41 Sasaki M, Chiwaki F, Kuroda T, et al. Efficacy of glutathione inhibitors for the treatment of ARID1A-deficient diffuse-type gastric cancers[J]. Biochem Biophys Res Commun, 2020, 522(2): 342-347.
42 Ishimoto T, Nagano O, Yae T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth[J]. Cancer Cell, 2011, 19(3): 387-400.
43 Yamaguchi I, Yoshimura SH, Katoh H. High cell density increases glioblastoma cell viability under glucose deprivation via degradation of the cystine/glutamate transporter xCT (SLC7A11)[J]. J Biol Chem, 2020, 295(20): 6936-6945.
44 Digomann D, Linge A, Dubrovska A. SLC3A2/CD98hc, autophagy and tumor radioresistance: a link confirmed[J]. Autophagy, 2019, 15(10): 1850-1851.
45 Digomann D, Kurth I, Tyutyunnykova A, et al. The CD98 heavy chain is a marker and regulator of head and neck squamous cell carcinoma radiosensitivity[J]. Clin Cancer Res, 2019, 25(10): 3152-3163.
46 Nachef M, Ali AK, Almutairi SM, et al. Targeting SLC1A5 and SLC3A2/SLC7A5 as a potential strategy to strengthen anti-tumor immunity in the tumor microenvironment[J]. Front Immunol, 2021, 12: 624324.
47 Park Y, Reyna-Neyra A, Philippe L, et al. mTORC1 balances cellular amino acid supply with demand for protein synthesis through post-transcriptional control of ATF4[J]. Cell Rep, 2017, 19(6): 1083-1090.
48 Verbist KC, Guy CS, Milasta S, et al. Metabolic maintenance of cell asymmetry following division in activated T lymphocytes[J]. Nature, 2016, 532(7599): 389-393.
49 Ma L, Zhang X, Yu K, et al. Targeting SLC3A2 su-bunit of system XC - is essential for m6A reader YTHDC2 to be an endogenous ferroptosis inducer in lung adenocarcinoma[J]. Free Radic Biol Med, 2021, 168: 25-43.
50 Zhu JJ, Berisa M, Schwörer S, et al. Transsulfuration activity can support cell growth upon extracellular cysteine limitation[J]. Cell Metab, 2019, 30(5): 865-876.e5.
51 Deneke SM, Fanburg BL. Regulation of cellular glutathione[J]. Am J Physiol, 1989, 257(4 Pt 1): L163-L173.
52 Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation[J]. Trends Cell Biol, 2016, 26(3): 165-176.
53 Yagoda N, von Rechenberg M, Zaganjor E, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels[J]. Nature, 2007, 447(7146): 864-868.
54 Suarez-Almazor ME, Belseck E, Shea B, et al. Sulfasalazine for rheumatoid arthritis[J]. Cochrane Database Syst Rev, 2000, 1998(2): CD000958.
55 Yuk H, Abdullah M, Kim DH, et al. Necrostatin-1 prevents ferroptosis in a RIPK1- and IDO-independent manner in hepatocellular carcinoma[J]. Antioxidants (Basel), 2021, 10(9): 1347.
56 Ju HQ, Lin JF, Tian T, et al. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications[J]. Signal Transduct Target Ther, 2020, 5(1): 231.
57 Ying MF, You D, Zhu XB, et al. Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions[J]. Redox Biol, 2021, 46: 102065.
58 Liu XG, Olszewski K, Zhang YL, et al. Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer[J]. Nat Cell Biol, 2020, 22(4): 476-486.
59 Liu XG, Nie LT, Zhang YL, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis[J]. Nat Cell Biol, 2023, 25(3): 404-414.
60 Richtsmeier WJ, Dauchy R, Sauer LA. In vivo nu-trient uptake by head and neck cancers[J]. Cancer Res, 1987, 47(19): 5230-5233.
61 Kodama M, Oshikawa K, Shimizu H, et al. A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer[J]. Nat Commun, 2020, 11(1): 1320.
62 Ji XM, Qian J, Rahman SMJ, et al. xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression[J]. Oncogene, 2018, 37(36): 5007-5019.
63 Romero R, Sayin VI, Davidson SM, et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis[J]. Nat Med, 2017, 23(11): 1362-1368.
64 Okazaki S, Umene K, Yamasaki J, et al. Glutaminoly-sis-related genes determine sensitivity to xCT-targe-ted therapy in head and neck squamous cell carcinoma[J]. Cancer Sci, 2019, 110(11): 3453-3463.
65 Muir A, Danai LV, Gui DY, et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition[J]. Elife, 2017, 6: e27713.
66 Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects[J]. Mol Cancer, 2013, 12: 152.
67 Wang HZ, Nicolay BN, Chick JM, et al. The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival[J]. Nature, 2017, 546(7658): 426-430.
68 Koppula P, Zhang YL, Zhuang L, et al. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer[J]. Cancer Commun (Lond), 2018, 38(1): 12.
69 Koppula P, Zhuang L, Gan BY. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620.
70 Lee Y, Itahana Y, Ong CC, et al. Redox-dependent AMPK inactivation disrupts metabolic adaptation to glucose starvation in xCT-overexpressing cancer cells[J]. J Cell Sci, 2022, 135(15): jcs259090.
71 Goji T, Takahara K, Negishi M, et al. Cystine uptake through the cystine/glutamate antiporter xCT triggers glioblastoma cell death under glucose deprivation[J]. J Biol Chem, 2017, 292(48): 19721-19732.
72 Hsieh CH, Lin YJ, Chen WL, et al. HIF-1α triggers long-lasting glutamate excitotoxicity via system xc - in cerebral ischaemia-reperfusion[J]. J Pathol, 2017, 241(3): 337-349.
73 Wang M, Li B, Meng W, et al. System Xc- exacerbates metabolic stress under glucose depletion in oral squamous cell carcinoma[J]. Oral Dis, 2023. doi: 10.1111/odi.14774 .
doi: 10.1111/odi.14774
74 Murphy TA, Dang CV, Young JD. Isotopically nonstationary 13C flux analysis of Myc-induced metabo-lic reprogramming in B-cells[J]. Metab Eng, 2013, 15: 206-217.
75 Jiang QK, Lu SR, Xu XL, et al. Inhibition of alanine-serine-cysteine transporter 2-mediated auto-enhanced photodynamic cancer therapy of co-nanoassembly between V-9302 and photosensitizer[J]. J Colloid Interface Sci, 2023, 629(Pt B): 773-784.
76 Elgogary A, Xu QG, Poore B, et al. Combination therapy with BPTES nanoparticles and metformin targets the metabolic heterogeneity of pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2016, 113(36): E5328-E5336.
77 Xu YY, Yu ZG, Fu H, et al. Dual inhibitions on glucose/glutamine metabolisms for nontoxic pancreatic cancer therapy[J]. ACS Appl Mater Interfaces, 2022, 14(19): 21836-21847.
78 Zhang M, Liu QY, Zhang MX, et al. Enhanced antitumor effects of follicle-stimulating hormone receptor-mediated hexokinase-2 depletion on ovarian cancer mediated by a shift in glucose metabolism[J]. J Nanobiotechnology, 2020, 18(1): 161.
79 Xu CJ, Yang HL, Xiao ZH, et al. Reduction-responsive dehydroepiandrosterone prodrug nanoparticles loaded with camptothecin for cancer therapy by enhancing oxidation therapy and cell replication inhibition[J]. Int J Pharm, 2021, 603: 120671.
80 Abolhasani A, Biria D, Abolhasani H, et al. Investigation of the role of glucose decorated chitosan and PLGA nanoparticles as blocking agents to glucose transporters of tumor cells[J]. Int J Nanomedicine, 2019, 14: 9535-9546.
81 Fu LH, Qi C, Lin J, et al. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment[J]. Chem Soc Rev, 2018, 47(17): 6454-6472.
82 Fu LH, Hu YR, Qi C, et al. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor the-rapy[J]. ACS Nano, 2019, 13(12): 13985-13994.
83 Li R, Ng TSC, Wang SJ, et al. Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer[J]. Nat Nanotechnol, 2021, 16(7): 830-839.
84 Wu ZR, Lim HK, Tan SJ, et al. Potent-by-design: amino acids mimicking porous nanotherapeutics with intrinsic anticancer targeting properties[J]. Small, 2020, 16(34): e2003757.
[1] 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115.
[2] 毛奇蓉,尹恒,李精韬. 边缘性腭咽闭合不全临床诊疗研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 116-124.
[3] 刘世一, 陈中, 张素欣. 程序性死亡受体/配体免疫治疗策略在人乳头瘤病毒阳性头颈部鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 21-27.
[4] 和子慕, 李风兰. 数字化口腔定位支架在头颈部肿瘤放射治疗中的应用现状[J]. 国际口腔医学杂志, 2024, 51(1): 28-35.
[5] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[6] 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59.
[7] 罗恩. 人工智能正颌外科的探索与临床初步应用[J]. 国际口腔医学杂志, 2022, 49(2): 125-131.
[8] 李嫣斐,张新春. 牙本质作为骨修复材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 197-203.
[9] 吴敏,李承浩,李扬,龚彩霞,石冰. 腭裂裂隙宽度与Sommerlad-Furlow法修复腭裂术后腭瘘发生率的关联研究[J]. 国际口腔医学杂志, 2021, 48(6): 640-643.
[10] 张哲,刘进,王卫红,陈志强,杨春,刘丽. 焦磷酸钙沉积症继发颞下颌关节脱位1例[J]. 国际口腔医学杂志, 2021, 48(6): 664-667.
[11] 孙嘉琳,林岩松,石冰,贾仲林. 5种常见综合征型唇腭裂遗传学研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 718-724.
[12] 王悦,文冰,邓梦婷,李建平. 低能量激光治疗对种植体周围组织愈合的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 725-730.
[13] 章杲威,李春洁. 机器人手术在头颈、耳鼻喉区域的发展现状[J]. 国际口腔医学杂志, 2021, 48(5): 614-620.
[14] 刘昱晨,田敏,牛丽娜,方明. 粘接固定桥存留率的影响因素及提高对策[J]. 国际口腔医学杂志, 2021, 48(5): 585-591.
[15] 刘嘉程,孟昭松,李宏捷,隋磊. 卵泡抑素在口腔颌面部发育中的作用及其治疗应用前景[J]. 国际口腔医学杂志, 2021, 48(5): 556-562.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[10] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .