国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (5): 614-620.doi: 10.7518/gjkq.2021098
• 综述 • 上一篇
摘要:
外科手术机器人具有优秀的可操作性,能为外科医生提供清晰的视野,辅助其在狭小的解剖空间内进行精准、微创的手术,在头颈、耳鼻喉区域具有强大的应用前景。相比于传统的开放手术,机器人手术避免了很多侵入性操作,能够降低手术对颌面部美观与功能的影响,改善患者术后生活质量。本文对近年来机器人手术技术在头颈、耳鼻喉外科的应用进行总结,归纳了在探索及实践过程中手术机器人存在的不足,并提出了未来可能的发展方向。
中图分类号:
[1] | 朱建华, 郭传瑸. 手术机器人系统在颅颌面外科中的应用及发展[J]. 华西口腔医学杂志, 2016, 34(5):534-538. |
Zhu JH, Guo CB. Application and development of surgical robot systems in craniomaxillofacial surgery[J]. West China J Stomatol, 2016, 34(5):534-538. | |
[2] |
Nakayama M, Holsinger FC, Chevalier D, et al. The dawn of robotic surgery in otolaryngology-head and neck surgery[J]. Jpn J Clin Oncol, 2019, 49(5):404-411.
doi: 10.1093/jjco/hyz020 pmid: 30796834 |
[3] |
Golusiński W. Functional organ preservation surgery in head and neck cancer: transoral robotic surgery and beyond[J]. Front Oncol, 2019, 9:293.
doi: 10.3389/fonc.2019.00293 pmid: 31058091 |
[4] |
Park DA, Lee MJ, Kim SH, et al. Comparative safety and effectiveness of transoral robotic surgery versus open surgery for oropharyngeal cancer: a syste-matic review and meta-analysis[J]. Eur J Surg Oncol, 2020, 46(4 Pt A):644-649.
doi: 10.1016/j.ejso.2019.09.185 |
[5] |
Meccariello G, Cammaroto G, Montevecchi F, et al. Transoral robotic surgery for the management of obstructive sleep apnea: a systematic review and meta-analysis[J]. Eur Arch Otorhinolaryngol, 2017, 274(2):647-653.
doi: 10.1007/s00405-016-4113-3 pmid: 27221389 |
[6] | Cambi J, Chiri ZM, De Santis S, et al. Outcomes in single-stage multilevel surgery for obstructive sleep apnea: transoral robotic surgery, expansion sphincter pharyngoplasty and septoplasty[J]. Int J Med Robot, 2019, 15(6):e2034. |
[7] |
Turhan M, Bostanci A. Robotic tongue-base resection combined with tongue-base suspension for obstructive sleep apnea[J]. Laryngoscope, 2020, 130(9):2285-2291.
doi: 10.1002/lary.28443 |
[8] | Cammaroto G, Stringa LM, Zhang H, et al. Alternative applications of trans-oral robotic surgery (TORS): a systematic review[J]. J Clin Med, 2020, 9(1):E201. |
[9] |
Holsinger FC. A flexible, single-arm robotic surgical system for transoral resection of the tonsil and lateral pharyngeal wall: next-generation robotic head and neck surgery[J]. Laryngoscope, 2016, 126(4):864-869.
doi: 10.1002/lary.25724 |
[10] |
Tsang RK, Holsinger FC. Transoral endoscopic nasopharyngectomy with a flexible next-generation robotic surgical system[J]. Laryngoscope, 2016, 126(10):2257-2262.
doi: 10.1002/lary.v126.10 |
[11] |
Chen MM, Orosco RK, Lim GC, et al. Improved transoral dissection of the tongue base with a next-generation robotic surgical system[J]. Laryngoscope, 2018, 128(1):78-83.
doi: 10.1002/lary.v128.1 |
[12] |
Chan JYK, Tsang RK, Holsinger FC, et al. Prospective clinical trial to evaluate safety and feasibility of using a single port flexible robotic system for transoral head and neck surgery[J]. Oral Oncol, 2019, 94:101-105.
doi: 10.1016/j.oraloncology.2019.05.018 |
[13] |
Remacle M, Prasad V, Lawson G, et al. Transoral robotic surgery (TORS) with the Medrobotics FlexTM System: first surgical application on humans[J]. Eur Arch Otorhinolaryngol, 2015, 272(6):1451-1455.
doi: 10.1007/s00405-015-3532-x pmid: 25663191 |
[14] |
Lang S, Mattheis S, Hasskamp P, et al. A European multicenter study evaluating the flex robotic system in transoral robotic surgery[J]. Laryngoscope, 2017, 127(2):391-395.
doi: 10.1002/lary.26358 |
[15] |
Hussain T, Lang S, Haßkamp P, et al. The Flex robotic system compared to transoral laser microsurgery for the resection of supraglottic carcinomas: first results and preliminary oncologic outcomes[J]. Eur Arch Otorhinolaryngol, 2020, 277(3):917-924.
doi: 10.1007/s00405-019-05767-0 pmid: 31893297 |
[16] |
Tan Wen Sheng B, Wong P, Teo Ee Hoon C. Transoral robotic excision of laryngeal papillomas with Flex® Robotic System-a novel surgical approach[J]. Am J Otolaryngol, 2018, 39(3):355-358.
doi: 10.1016/j.amjoto.2018.03.011 |
[17] |
Persky MJ, Issa M, Bonfili JR, et al. Transoral surgery using the Flex Robotic System: initial experience in the United States[J]. Head Neck, 2018, 40(11):2482-2486.
doi: 10.1002/hed.v40.11 |
[18] |
Sethi N, Gouzos M, Padhye V, et al. Transoral robotic surgery using the Medrobotic Flex® system: the Adelaide experience[J]. J Robot Surg, 2020, 14(1):109-113.
doi: 10.1007/s11701-019-00941-2 |
[19] |
Chan JY, Tsang RK, Eisele DW, et al. Transoral robotic surgery of the parapharyngeal space: a case series and systematic review[J]. Head Neck, 2015, 37(2):293-298.
doi: 10.1002/hed.v37.2 |
[20] |
Duek I, Sviri GE, Billan S, et al. Minimally invasive surgery for resection of parapharyngeal space tumors[J]. J Neurol Surg B Skull Base, 2018, 79(3):250-256.
doi: 10.1055/s-0037-1607315 |
[21] | Sethi N, Dale O, Vidhyadharan S, et al. Transoral robotic narrow field oropharyngectomy for tumours of the parapharyngeal space[J]. Int J Med Robot, 2020, 16(3):e2083. |
[22] |
Duek I, Amit M, Sviri GE, et al. Combined endoscopic transcervical-transoral robotic approach for resection of parapharyngeal space tumors[J]. Head Neck, 2017, 39(4):786-790.
doi: 10.1002/hed.v39.4 |
[23] |
Walvekar RR, Peters G, Hardy E, et al. Robotic-assisted transoral removal of a bilateral floor of mouth ranulas[J]. World J Surg Oncol, 2011, 9:78.
doi: 10.1186/1477-7819-9-78 pmid: 21767364 |
[24] |
Capaccio P, Montevecchi F, Meccariello G, et al. Transoral robotic surgery for Hilo-parenchymal submandibular stones: step-by-step description and reasoned approach[J]. Int J Oral Maxillofac Surg, 2019, 48(12):1520-1524.
doi: 10.1016/j.ijom.2019.07.004 |
[25] |
Razavi C, Pascheles C, Samara G, et al. Robot-assisted sialolithotomy with sialendoscopy for the ma-nagement of large submandibular gland stones[J]. Laryngoscope, 2016, 126(2):345-351.
doi: 10.1002/lary.v126.2 |
[26] |
Bonawitz SC, Duvvuri U. Robotic-assisted FAMM flap for soft palate reconstruction[J]. Laryngoscope, 2013, 123(4):870-874.
doi: 10.1002/lary.23578 |
[27] |
Tsai YC, Liu SA, Lai CS, et al. Functional outcomes and complications of robot-assisted free flap oropharyngeal reconstruction[J]. Ann Plast Surg, 2017, 78(3 Suppl 2):S76-S82.
doi: 10.1097/SAP.0000000000001010 |
[28] |
Gorphe P, Temam S, Kolb F, et al. Cervical-transoral robotic oropharyngectomy and thin anterolate-ral thigh free flap[J]. Eur Ann Otorhinolaryngol Head Neck Dis, 2018, 135(1):71-74.
doi: S1879-7296(17)30132-1 pmid: 28927845 |
[29] |
Turner MT, Geltzeiler M, Albergotti WG, et al. Reconstruction of TORS oropharyngectomy defects wi-th the nasoseptal flap via transpalatal tunnel[J]. J Robot Surg, 2020, 14(2):311-316.
doi: 10.1007/s11701-019-00984-5 |
[30] |
Lai CS, Lu CT, Liu SA, et al. Robot-assisted microvascular anastomosis in head and neck free flap reconstruction: preliminary experiences and results[J]. Microsurgery, 2019, 39(8):715-720.
doi: 10.1002/micr.v39.8 |
[31] |
Nadjmi N. Transoral robotic cleft palate surgery[J]. Cleft Palate Craniofac J, 2016, 53(3):326-331.
doi: 10.1597/14-077 |
[32] |
Khan K, Dobbs T, Swan MC, et al. Trans-oral robo-tic cleft surgery (TORCS) for palate and posterior pharyngeal wall reconstruction: a feasibility study[J]. J Plast Reconstr Aesthet Surg, 2016, 69(1):97-100.
doi: 10.1016/j.bjps.2015.08.020 |
[33] |
Podolsky DJ, Fisher DM, Wong Riff KWY, et al. Infant robotic cleft palate surgery: a feasibility assessment using a realistic cleft palate simulator[J]. Plast Reconstr Surg, 2017, 139(2):455e-465e.
doi: 10.1097/PRS.0000000000003010 |
[34] |
Singh RP, Sung ES, Song CM, et al. Robot-assisted excision of the submandibular gland by a postauricular facelift approach: comparison with the conventional transcervical approach[J]. Br J Oral Maxillofac Surg, 2017, 55(10):1030-1034.
doi: S0266-4356(17)30723-4 pmid: 29122340 |
[35] |
Lira RB Chulam TC de Carvalho GB, et al. Retroauricular endoscopic and robotic versus conventio-nal neck dissection for oral cancer[J]. J Robot Surg, 2018, 12(1):117-129.
doi: 10.1007/s11701-017-0706-0 |
[36] |
Ji YB, Song CM, Bang HS, et al. Functional and cosmetic outcomes of robot-assisted neck dissection by a postauricular facelift approach for head and ne-ck cancer[J]. Oral Oncol, 2017, 70:51-57.
doi: 10.1016/j.oraloncology.2017.05.014 |
[37] |
Rao V, Subash A, Sinha P, et al. Modified facelift approach for posterior segmental mandibulectomy: a blend of oncology and cosmesis[J]. Eur Arch Otorhinolaryngol, 2020, 277(4):1205-1210.
doi: 10.1007/s00405-020-05793-3 |
[38] |
Rao V, Prasad R, Subash A, et al. Technique of flap elevation for robot assisted selective neck dissection via retroauricular approach: a surgeon’s guide[J]. J Robot Surg, 2020, 14(2):337-341.
doi: 10.1007/s11701-019-00992-5 |
[39] |
Kim CH, Chang JW, Choi EC, et al. Robotically assisted selective neck dissection in parotid gland cancer: preliminary report[J]. Laryngoscope, 2013, 123(3):646-650.
doi: 10.1002/lary.23716 |
[40] |
Zhu JH, Deng J, Liu XJ, et al. Prospects of robot-assisted mandibular reconstruction with fibula flap: comparison with a computer-assisted navigation system and freehand technique[J]. J Reconstr Microsurg, 2016, 32(9):661-669.
doi: 10.1055/s-0036-1584805 |
[41] |
Woo SY, Lee SJ, Yoo JY, et al. Autonomous bone reposition around anatomical landmark for robot-assisted orthognathic surgery[J]. J Craniomaxillofac Surg, 2017, 45(12):1980-1988.
doi: 10.1016/j.jcms.2017.09.001 |
[42] | Ahn J, Choi H, Hong J, et al. Tracking accuracy of a stereo camera-based augmented reality navigation system for orthognathic surgery[J]. J Oral Maxillofac Surg, 2019, 77(5): 1070.e1-1070.e11. |
[43] |
Chao AH, Weimer K, Raczkowsky J, et al. Pre-programmed robotic osteotomies for fibula free flap man-dible reconstruction: a preclinical investigation[J]. Microsurgery, 2016, 36(3):246-249.
doi: 10.1002/micr.30013 |
[44] |
Augello M, Baetscher C, Segesser M, et al. Performing partial mandibular resection, fibula free flap reconstruction and midfacial osteotomies with a cold ablation and robot-guided Er: YAG laser osteotome (CARLO®)-a study on applicability and effectiveness in human cadavers[J]. J Craniomaxillofac Surg, 2018, 46(10):1850-1855.
doi: 10.1016/j.jcms.2018.08.001 |
[45] |
Chalmers R, Schlabe J, Yeung E, et al. Robot-assisted reconstruction in head and neck surgical oncology: the evolving role of the reconstructive microsurgeon[J]. ORL J Otorhinolaryngol Relat Spec, 2018, 80(3/4):178-185.
doi: 10.1159/000492787 |
[46] |
Tamaki A, Rocco JW, Ozer E. The future of robotic surgery in otolaryngology-head and neck surgery[J]. Oral Oncol, 2020, 101:104510.
doi: S1368-8375(19)30421-X pmid: 31841882 |
[1] | 毕小琴,熊茂婧,陈丽先,白沅艳,田莉,杨晖. 新型冠状病毒肺炎疫情下口腔颌面外科的护理防控[J]. 国际口腔医学杂志, 2020, 47(2): 244-248. |
[2] | 王珂, 项涛, 汤亚玲, 梁新华. 3D打印技术在口腔颌面外科实验教学中的应用[J]. 国际口腔医学杂志, 2018, 45(1): 119-124. |
[3] | 李侃 廖贵清. 颈淋巴清扫术后胸锁关节脱位、过度增大的研究进展[J]. 国际口腔医学杂志, 2015, 42(6): 724-727. |
[4] | 肖逊1综述 罗云2审校. 糖尿病患者口腔颌面外科围手术期的风险和预防[J]. 国际口腔医学杂志, 2011, 38(6): 712-716. |
[5] | 钟时春综述 张志光审校. 单侧颈淋巴清扫术切口的研究进展[J]. 国际口腔医学杂志, 2009, 36(4): 459-461. |
[6] | 高超综述 汤炜, 田卫东审校. 手术导航系统在口腔颌面外科中的应用[J]. 国际口腔医学杂志, 2008, 35(4): 447-447~449. |
[7] | 郑家伟,邱蔚六. 头颈鳞癌颈淋巴结临床阴性患者的诊断及治疗[J]. 国际口腔医学杂志, 2004, 31(06): 455-458. |
|