国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (1): 43-47.doi: 10.7518/gjkq.2019.01.008
Zhikai Liu,Chunyi Wang,Chunjie Li()
摘要:
颌下腺作为重要的唾液腺组成部分,其临床相关实验与器官重构的意义在近年来越发受到重视。本文综述了近年来国内外颌下腺的研究进展,介绍了颌下腺分支形态发生的基本概念,分析了分支形态发生过程中相关的影响因素,包括生长因子、激素、微小RNA等多个方面。
中图分类号:
[1] |
Sakai T . Development and regeneration of salivary gland toward for clinical application[J]. Oral Sci Int, 2016,13(1):7-14.
doi: 10.1016/S1348-8643(15)00040-3 |
[2] |
Tucker AS . Salivary gland development[J]. Semin Cell Dev Biol, 2007,18(2):237-244.
doi: 10.1016/j.semcdb.2007.01.006 |
[3] |
Koyama N, Hayashi T, Kashimata M . Regulation of branching morphogenesis in fetal mouse submandi-bular gland by signaling pathways activated by growth factors and α6 integrin[J]. J Oral Biosci, 2011,53(4):298-303.
doi: 10.1016/S1349-0079(11)80022-8 |
[4] |
Häärä O, Koivisto T, Miettinen PJ . EGF-receptor re-gulates salivary gland branching morphogenesis by supporting proliferation and maturation of epithelial cells and survival of mesenchymal cells[J]. Differen-tiation, 2009,77(3):298-306.
doi: 10.1016/j.diff.2008.10.006 pmid: 19272528 |
[5] |
Kobayashi F, Matsuzaka K, Inoue T . The effect of basic fibroblast growth factor on regeneration in a surgical wound model of rat submandibular glands[J]. Int J Oral Sci, 2016,8(1):16-23.
doi: 10.1038/ijos.2015.36 pmid: 4822181 |
[6] |
Cortez VS, Cervantes-Barragan L, Robinette ML , et al. Transforming growth factor-β signaling guides the differentiation of innate lymphoid cells in salivary glands[J]. Immunity, 2016,44(5):1127-1139.
doi: 10.1016/j.immuni.2016.03.007 pmid: 27156386 |
[7] |
Gao P, Qiao XH, Gou LM , et al. TGF-β1 attenuated branching morphogenesis of embryonic murine submandibular gland through Smad3 activation[J]. Anat Histol Embryol, 2017,46(6):600-605.
doi: 10.1111/ahe.12295 pmid: 28884513 |
[8] |
Sathi GA, Farahat M, Hara ES , et al. MCSF orches-trates branching morphogenesis in developing sub-mandibular gland tissue[J]. J Cell Sci, 2017,130(9):1559-1569.
doi: 10.1242/jcs.196907 pmid: 28348107 |
[9] |
Ingham PW, McMahon AP . Hedgehog signaling in animal development: paradigms and principles[J]. Genes Dev, 2001,15(23):3059-3087.
doi: 10.1101/gad.938601 pmid: 11731473 |
[10] |
Mizukoshi K, Koyama N, Hayashi T , et al. Shh/Ptch and EGF/ErbB cooperatively regulate branching morphogenesis of fetal mouse submandibular glands[J]. Dev Biol, 2016,412(2):278-287.
doi: 10.1016/j.ydbio.2016.02.018 pmid: 26930157 |
[11] |
Obana-Koshino A, Ono H, Miura J , et al. Melatonin inhibits embryonic salivary gland branching morpho-genesis by regulating both epithelial cell adhesion and morphology[J]. PLoS One, 2015,10(4):e0119960.
doi: 10.1371/journal.pone.0119960 pmid: 25876057 |
[12] |
Jevnaker AM, Osmundsen H . MicroRNA expression profiling of the developing murine molar tooth germ and the developing murine submandibular salivary gland[J]. Arch Oral Biol, 2008,53(7):629-645.
doi: 10.1016/j.archoralbio.2008.01.014 pmid: 18346711 |
[13] |
Gluck C, Min S, Oyelakin A , et al. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation[J]. BMC Genomics, 2016,17(1):923.
doi: 10.1186/s12864-016-3228-7 pmid: 27852218 |
[14] |
Rebustini IT, Hayashi T, Reynolds AD , et al. miR-200c regulates FGFR-dependent epithelial prolife-ration via Vldlr during submandibular gland bran-ching morphogenesis[J]. Development, 2012,139(1):191-202.
doi: 10.1242/dev.070151 pmid: 22115756 |
[15] |
Hayashi T, Koyama N, Gresik EW , et al. Detection of EGF-dependent microRNAs of the fetal mouse submandibular gland at embryonic day 13[J]. J Med Invest, 2009,56(Suppl):250-252.
doi: 10.2152/jmi.56.250 pmid: 20224191 |
[16] |
Hayashi T, Koyama N, Azuma Y , et al. Mesenchymal miR-21 regulates branching morphogenesis in murine submandibular gland in vitro[J]. Dev Biol, 2011,352(2):299-307.
doi: 10.1016/j.ydbio.2011.01.030 pmid: 21295561 |
[17] |
Wong DT . Salivary extracellular noncoding RNA: emerging biomarkers for molecular diagnostics[J]. Clin Ther, 2015,37(3):540-551.
doi: 10.1016/j.clinthera.2015.02.017 pmid: 25795433 |
[18] |
Shi H, Cao N, Pu Y , et al. Long non-coding RNA expression profile in minor salivary gland of primary Sjögren’s syndrome[J]. Arthritis Res Ther, 2016,18(1):109.
doi: 10.1186/s13075-016-1005-2 pmid: 4869341 |
[19] |
Kwon HR, Larsen M . The contribution of specific cell subpopulations to submandibular salivary gland branching morphogenesis[J]. Curr Opin Genet Dev, 2015,32:47-54.
doi: 10.1016/j.gde.2015.01.007 pmid: 25706196 |
[20] |
Rugel-Stahl A, Elliott ME, Ovitt CE . Ascl3 marks adult progenitor cells of the mouse salivary gland[J]. Stem Cell Res, 2012,8(3):379-387.
doi: 10.1016/j.scr.2012.01.002 pmid: 22370009 |
[21] |
Nelson DA, Manhardt C, Kamath V , et al. Quan-titative single cell analysis of cell population dynamics during submandibular salivary gland development and differentiation[J]. Biol Open, 2013,2(5):439-447.
doi: 10.1242/bio.20134309 pmid: 3654261 |
[22] |
Lombaert IM, Abrams SR, Li L , et al. Combined KIT and FGFR2b signaling regulates epithelial progenitor expansion during organogenesis[J]. Stem Cell Reports, 2013,1(6):604-619.
doi: 10.1016/j.stemcr.2013.10.013 pmid: 24371813 |
[23] |
Ray S, Yuan D, Dhulekar N , et al. Cell-based multi-parametric model of cleft progression during sub-mandibular salivary gland branching morphogenesis[J]. PLoS Comput Biol, 2013,9(11):e1003319.
doi: 10.1371/journal.pcbi.1003319 pmid: 24277996 |
[24] |
Ogawa M, Oshima M, Imamura A , et al. Functional salivary gland regeneration by transplantation of a bioengineered organ germ[J]. Nat Commun, 2013,4:2498.
doi: 10.1038/ncomms3498 pmid: 24084982 |
[25] |
Racz GZ, Zheng C, Goldsmith CM , et al. Toward gene therapy for growth hormone deficiency via salivary gland expression of growth hormone[J]. Oral Dis, 2015,21(2):149-155.
doi: 10.1111/odi.12217 pmid: 24320050 |
[1] | 周金阔,张晋弘,史晓晶,刘广顺,姜磊,刘倩峰. 长链非编码RNA小核仁RNA宿主基因22调控微小RNA-27b-3p对口腔鳞状细胞癌细胞增殖、侵袭和迁移的影响[J]. 国际口腔医学杂志, 2024, 51(1): 52-59. |
[2] | 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67. |
[3] | 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271. |
[4] | 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355. |
[5] | 艾晓青,窦磊,乔新,杨德琴. 三维培养牙髓间充质细胞外泌体微小RNA表达谱分析[J]. 国际口腔医学杂志, 2022, 49(1): 27-36. |
[6] | 沈洁,何地,刘雁鸣. 下颌下腺良性肿瘤功能性手术的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 230-237. |
[7] | 孙坚炜,雷利红,谭静怡,陈莉丽. 微小RNA 155对骨免疫的调控及其在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 607-615. |
[8] | 周婕妤,刘琳,吴亚菲,赵蕾. 微小RNA介导的牙周炎与动脉粥样硬化相关机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 76-83. |
[9] | 张晓敏,高莺. 残余颌下腺Wharton导管内涎石复发的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 604-608. |
[10] | 冯顶丽,卓丽丹,芦笛,郭红延. 微小RNA调节间充质干细胞软骨分化机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 640-645. |
[11] | 方川,李雅冬. 微小RNA在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 646-651. |
[12] | 郝奕霖, 房付春, 吴补领. 微小RNA在人牙周膜来源细胞成骨分化中的作用[J]. 国际口腔医学杂志, 2018, 45(1): 46-49. |
[13] | 刘润恒,刘于冬,陈卓凡. 微小RNA在骨分化过程中的作用机制[J]. 国际口腔医学杂志, 2017, 44(1): 108-113. |
[14] | 耿奉雪,潘亚萍. 微小RNA-203的生物学功能及其在口腔疾病中的作用[J]. 国际口腔医学杂志, 2016, 43(6): 685-689. |
[15] | 李龙,黄洪章. 微小RNA-205在肿瘤化学治疗耐药中的作用和机制[J]. 国际口腔医学杂志, 2016, 43(6): 734-738. |
|