国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (5): 514-518.doi: 10.7518/gjkq.2017.05.004
李琳1, 2, 王丹1, 赵曼竹3, 唐明1
Li Lin1, 2, Wang Dan1, Zhao Manzhu3, Tang Ming1
摘要: 神经退行性疾病包括阿兹海默病、帕金森病、亨廷顿氏病等,主要表现为患者渐进性运动、感觉或认知功能障碍,该类疾病多发生于中老年人,且无有效的治愈措施。诸多研究表明,中枢神经炎症、全身炎症及免疫失调可能参与该类疾病的发生与发展。慢性牙周炎作为局部细菌感染性疾病,可能通过牙周致病菌及炎症介质等方式调节机体,影响神经退行性疾病。本文就目前慢性牙周炎与神经退行性疾病的相关性研究作一综述,旨在为预防和治疗神经退行性疾病提供新的思路。
中图分类号:
[1] Mulak A, Bonaz B. Brain-gut-microbiota axis in Par-kinson’s disease[J]. World J Gastroenterol, 2015, 21 (37):10609-10620. [2] Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response [J]. Trends Immunol, 2014, 35(1):3-11. [3] Ide M, Harris M, Stevens A, et al. Periodontitis and cognitive decline in Alzheimer’s disease[J]. PLoS One, 2016, 11(3):e0151081. [4] Joseph BK, Kullman L, Sharma PN. The oral-systemic disease connection: a retrospective study[J]. Clin Oral Investig, 2016, 20(8):2267-2273. [5] Chapple IL, Milward MR, Dietrich T. The prevalence of inflammatory periodontitis is negatively associated with serum antioxidant concentrations[J]. J Nutr, 2007, 137(3):657-664. [6] 齐小秋. 第三次全国口腔健康流行病学调查报告[M]. 北京: 人民卫生出版社, 2008:60-102. Qi XQ. The third national oral health epidemiologi-cal survey report[M]. Beijing: People’s Medical Pub-lishing House, 2008:60-102. [7] Hollister EB, Gao C, Versalovic J. Compositional and functional features of the gastrointestinal microbiome and their effects on human health[J]. Gastroentero-logy, 2014, 146(6):1449-1458. [8] Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation[J]. Nat Rev Im-munol, 2015, 15(1):30-44. [9] Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets[J]. Periodontol 2000, 2002, 28: 12-55. [10] Bensley L, VanEenwyk J, Ossiander EM. Associations of self-reported periodontal disease with metabolic syndrome and number of self-reported chronic con-ditions[J]. Prev Chronic Dis, 2011, 8(3):A50. [11] Dye BA, Herrera-Abreu M, Lerche-Sehm J, et al. Serum antibodies to periodontal bacteria as diagnostic markers of periodontitis[J]. J Periodontol, 2009, 80 (4):634-647. [12] Wu Z, Nakanishi H. Connection between periodonti-tis and Alzheimer’s disease: possible roles of micro-glia and leptomeningeal cells[J]. J Pharmacol Sci, 2014, 126(1):8-13. [13] Kamer AR, Craig RG, Dasanayake AP, et al. Inflam-mation and Alzheimer’s disease: possible role of perio-dontal diseases[J]. Alzheimers Dement, 2008, 4(4): 242-250. [14] Belstrøm D, Holmstrup P, Damgaard C, et al. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythro-cytes[J]. Infect Immun, 2011, 79(4):1559-1565. [15] Lakio L, Antinheimo J, Paju S, et al. Tracking of plasma antibodies against Aggregatibacter actinomy-cetemcomitans and Porphyromonas gingivalis during 15 years[J]. J Oral Microbiol, 2009, 1:10.3402/jom.-v1i0.1979. [16] Poole S, Singhrao SK, Kesavalu L, et al. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue[J]. J Alzheimers Dis, 2013, 36(4):665-677. [17] Tomás I, Alvarez M, Limeres J, et al. Prevalence, du-ration and aetiology of bacteraemia following dental extractions[J]. Oral Dis, 2007, 13(1):56-62. [18] Forner L, Larsen T, Kilian M, et al. Incidence of ba-cteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation[J]. J Clin Periodontol, 2006, 33(6):401-407. [19] Ferrari CC, Tarelli R. Parkinson’s disease and systemic inflammation[J]. Parkinsons Dis, 2011, 2011:436813. [20] Liu Y, Wu Z, Zhang X, et al. Leptomeningeal cells transduce peripheral macrophages inflammatory sig-nal to microglia in reponse to Porphyromonas gingi-valis LPS[J]. Mediators Inflamm, 2013, 2013:407562. [21] Appel SH, Beers DR, Henkel JS. T cell-microglial dialogue in Parkinson’s disease and amyotrophic lateral sclerosis: are we listening[J]. Trends Immunol, 2010, 31(1):7-17. [22] Beers DR, Zhao W, Liao B, et al. Neuroinflammation modulates distinct regional and temporal clinical res-ponses in ALS mice[J]. Brain Behav Immun, 2011, 25(5):1025-1035. [23] Lee JW, Lee YK, Yuk DY, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive im-pairment through enhancement of beta-amyloid ge-neration[J]. J Neuroinflammation, 2008, 5:37. [24] Püntener U, Booth SG, Perry VH, et al. Long-term impact of systemic bacterial infection on the cerebral vasculature and microglia[J]. J Neuroinflammation, 2012, 9:146. [25] Montgomery SL, Bowers WJ. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degene-rative processes within the central nervous system[J]. J Neuroimmune Pharmacol, 2012, 7(1):42-59. [26] Bhaskar K, Maphis N, Xu G, et al. Microglial derived tumor necrosis factor-α drives Alzheimer’s disease-related neuronal cell cycle events[J]. Neurobiol Dis, 2014, 62:273-285. [27] Sparks Stein P, Steffen MJ, Smith C, et al. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer’s disease[J]. Alzheimers Dement, 2012, 8(3):196-203. [28] Riviere GR, Riviere KH, Smith KS. Molecular and immunological evidence of oral Treponema in the hu-man brain and their association with Alzheimer’s disease [J]. Oral Microbiol Immunol, 2002, 17(2):113-118. [29] Noble JM, Scarmeas N, Celenti RS, et al. Serum IgG antibody levels to periodontal microbiota are asso-ciated with incident Alzheimer disease[J]. PLoS One, 2014, 9(12):e114959. [30] Farhad SZ, Amini S, Khalilian A, et al. The effect of chronic periodontitis on serum levels of tumor necro-sis factor-alpha in Alzheimer disease[J]. Dent Res J (Isfahan), 2014, 11(5):549-552. [31] Gil-Montoya JA, Sanchez-Lara I, Carnero-Pardo C, et al. Is periodontitis a risk factor for cognitive im-pairment and dementia? A case-control study[J]. J Periodontol, 2015, 86(2):244-253. [32] Engelborghs S, Gilles C, Ivanoiu A, et al. Rationale and clinical data supporting nutritional intervention in Alzheimer’s disease[J]. Acta ClinBelg, 2014, 69(1): 17-24. [33] Noble JM, Borrell LN, Papapanou PN, et al. Perio-dontitis is associated with cognitive impairment among older adults: analysis of NHANES-Ⅲ[J]. J Neurol Neurosurg Psychiatry, 2009, 80(11):1206-1211. [34] Einarsdóttir ER, Gunnsteinsdóttir H, Hallsdóttir MH, et al. Dental health of patients with Parkinson’s dis-ease in Iceland[J]. Spec Care Dentist, 2009, 29(3): 123-127. [35] Herrera AJ, Castaño A, Venero JL, et al. The single intranigral injection of LPS as a new model for stu-dying the selective effects of inflammatory reactions on dopaminergic system[J]. Neurobiol Dis, 2000, 7 (4):429-447. [36] Chen H, Zhang SM, Hernán MA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease[J]. Arch Neurol, 2003, 60(8):1059-1064. |
[1] | 刘世一, 陈中, 张素欣. 程序性死亡受体/配体免疫治疗策略在人乳头瘤病毒阳性头颈部鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 21-27. |
[2] | 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593. |
[3] | 徐智博,孟秀萍. 粪肠球菌逃逸宿主免疫防御机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 613-617. |
[4] | 杨晓宇,袁泉. 纤维蛋白原血管外沉积在黏膜免疫中作用的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 457-462. |
[5] | 成益凡,秦旭,姜鸣,朱光勋. 牙周病中固有淋巴细胞的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 32-36. |
[6] | 罗婉逸,韩居熺,周学东,彭显,郑欣. 具核梭杆菌促进结直肠癌发生发展机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 52-60. |
[7] | 叶玉琳,江莉婷,高益鸣. 舍格伦综合征唾液腺中自噬现象的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 556-560. |
[8] | 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592. |
[9] | 李洪芳,陈中,张素欣. 免疫检查点抑制剂联合放射治疗在头颈部鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 614-620. |
[10] | 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440. |
[11] | 陈思婷,钟雄,孟文霞. Nod样受体家族嘌呤结构域3炎症小体在口腔黏膜病中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 471-475. |
[12] | 冯璐,孟文霞. 常见口腔黏膜疾病患者行种植修复相关问题的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 147-155. |
[13] | 漆晓玲,甘廷彬,黄姣. 慢性牙周炎和慢性肾病相关关系的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 18-22. |
[14] | 黄俊文,乔洁,梅子,陈茁,李杨,乔彬. 脂多糖结合蛋白在口腔鳞状细胞癌中的表达及其临床意义[J]. 国际口腔医学杂志, 2021, 48(1): 50-57. |
[15] | 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668. |
|