Int J Stomatol ›› 2022, Vol. 49 ›› Issue (3): 337-342.doi: 10.7518/gjkq.2022058

• Reviews • Previous Articles     Next Articles

Research progress on cervical vertebra maturation in evaluating bone age of mandible

Li Jingwen(),Zhou Li.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-09-25 Revised:2022-01-10 Online:2022-05-01 Published:2022-05-09
  • Contact: Li. Zhou;


Early functional correction and orthopedic treatment are important means to improve the difference in mandibular development. Therefore, the peak growth period of the mandible by bone age must be evaluated to determine the start time of correction. The cervical vertebra maturation (CVM) method can predict the growth and development period of the mandible based on the regular changes in the shape and size of cervical vertebra at different growth and development stages. The assessment of bone age is convenient and practical. Compared with the wrist bone method, bone age assessment is widely used in clinical practice and does not require patients to receive additional radiation. However, this method is controversial because of its high subjectivity and low repeatability. In response to these problems, a variety of improved methods, including incorporation of objective indicators to describe cervical-spine morphology, improvement of experimental design and data analysis methods, the use of cone-beam computed tomography images to analyze cervical spine morphology, and the use of computer-aided positioning, have been proposed. This article reviews the supporting evidence, related controversies, and improved methods for the clinical application of CVM method.

Key words: cervical vertebrae maturation method, bone age, the peak in mandibular growth

CLC Number: 

  • R 783


Fig 1

Schematic representation of the stages of cervical vertebrae"

Fig 2

Measuring points, lines and angle used in the cephalometric analysis"

1 Baccetti T, Franchi L, McNamara JA Jr. The cervical vertebral maturation (CVM) method for the assessment of optimal treatment timing in dentofacial orthopedics[J]. Semin Orthod, 2005, 11(3): 119-129.
2 Lamparski DG. Skeletal age assessment utilizing cervical vertebrae[D]. Pittsburgh: University of Pitts-burgh, 1972.
3 Patcas R, Wiedemeier DB, Markic G, et al. Evidence of secular trend in mandibular pubertal growth[J]. Eur J Orthod, 2017, 39(6): 680-685.
4 Mellion ZJ, Behrents RG, Johnston LE Jr. The pattern of facial skeletal growth and its relationship to various common indexes of maturation[J]. Am J Orthod Dentofacial Orthop, 2013, 143(6): 845-854.
5 Perinetti G, Contardo L, Castaldo A, et al. Diagnostic reliability of the cervical vertebral maturation method and standing height in the identification of the mandibular growth spurt[J]. Angle Orthod, 2016, 86(4): 599-609.
6 Franchi L, Nieri M, McNamara JA Jr, et al. Predicting mandibular growth based on CVM stage and gender and with chronological age as a curvilinear variable[J]. Orthod Craniofac Res, 2021, 24(3): 414-420.
7 Ball G, Woodside D, Tompson B, et al. Relationship between cervical vertebral maturation and mandibular growth[J]. Am J Orthod Dentofacial Orthop, 2011, 139(5): e455-e461.
8 Perinetti G, Braga C, Contardo L, et al. Cervical vertebral maturation: are postpubertal stages attained in all subjects[J]. Am J Orthod Dentofacial Orthop, 2020, 157(3): 305-312.
9 Gray S, Bennani H, Kieser JA, et al. Morphometric analysis of cervical vertebrae in relation to mandibular growth[J]. Am J Orthod Dentofacial Orthop, 2016, 149(1): 92-98.
10 Morris KM, Fields HW Jr, Beck FM, et al. Diagnostic testing of cervical vertebral maturation staging: An independent assessment[J]. Am J Orthod Dentofacial Orthop, 2019, 156(5): 626-632.
11 Engel TP, Renkema AM, Katsaros C, et al. The cervical vertebrae maturation (CVM) method cannot predict craniofacial growth in girls with class Ⅱ malocclusion[J]. Eur J Orthod, 2016, 38(1): 1-7.
12 Sohrabi A, Babay Ahari S, Moslemzadeh H, et al. The reliability of clinical decisions based on the cervical vertebrae maturation staging method[J]. Eur J Orthod, 2016, 38(1): 8-12.
13 Zhao XG, Lin JX, Jiang JH, et al. Validity and reliability of a method for assessment of cervical vertebral maturation[J]. Angle Orthod, 2012, 82(2): 229-234.
14 Chen LL, Xu TM, Jiang JH, et al. Quantitative cervical vertebral maturation assessment in adolescents with normal occlusion: a mixed longitudinal study[J]. Am J Orthod Dentofacial Orthop, 2008, 134(6): 720.e1-720.e7, 720-721.
15 Perinetti G, Bianchet A, Franchi L, et al. Cervical vertebral maturation: an objective and transparent code staging system applied to a 6-year longitudinal investigation[J]. Am J Orthod Dentofacial Orthop, 2017, 151(5): 898-906.
16 Gabriel DB, Southard KA, Qian F, et al. Cervical vertebrae maturation method: poor reproducibility[J]. Am J Orthod Dentofacial Orthop, 2009, 136(4): 478.e1-478.e7, 478-480.
17 Nestman TS, Marshall SD, Qian F, et al. Cervical vertebrae maturation method morphologic criteria: Poor reproducibility[J]. Am J Orthod Dentofacial Orthop, 2011, 140(2): 182-188.
18 Franchi L, Baccetti T, McNamara JA Jr. Mandibular growth as related to cervical vertebral maturation and body height[J]. Am J Orthod Dentofacial Orthop, 2000, 118(3): 335-340.
19 Perinetti G, Primozic J, Sharma B, et al. Cervical vertebral maturation method and mandibular growth peak: a longitudinal study of diagnostic reliability[J]. Eur J Orthod, 2018, 40(6): 666-672.
20 Salazar-Lazo R, Arriola-Guillén LE, Flores-Mir C. Duration of the peak of adolescent growth spurt in class i and ii malocclusion subjects using a cervical vertebrae maturation analysis[J]. Acta Odontol Latinoam, 2014, 27(2): 96-101.
21 Perinetti G, Caprioglio A, Contardo L. Visual assessment of the cervical vertebral maturation stages: a study of diagnostic accuracy and repeatability[J]. Angle Orthod, 2014, 84(6): 951-956.
22 冯筱妍. 基于CBCT数据的自动化颈椎骨龄评估系统的初步探索[D]. 杭州: 浙江大学, 2020: 5.
Feng XY. A preliminary study of automated cervical vertebrae maturity assessment system based on CBCT data[D]. Hangzhou: Zhejiang University, 2020: 5.
23 Beit P, Peltomäki T, Schätzle M, et al. Evaluating the agreement of skeletal age assessment based on hand-wrist and cervical vertebrae radiography[J]. Am J Orthod Dentofacial Orthop, 2013, 144(6): 838-847.
24 Mehta S, Dresner R, Gandhi V, et al. Effect of positional errors on the accuracy of cervical vertebrae maturation assessment using CBCT and lateral cephalograms[J]. J World Fed Orthod, 2020, 9(4): 146-154.
25 Tekın A, Cesur Aydın K. Comparative determination of skeletal maturity by hand-wrist radiograph, cephalometric radiograph and cone beam computed tomography[J]. Oral Radiol, 2020, 36(4): 327-336.
26 Byun BR, Kim YI, Yamaguchi T, et al. Quantitative assessment of cervical vertebral maturation using cone beam computed tomography in Korean girls[J]. Comput Math Methods Med, 2015, 2015: 405912.
27 Chen LL, Lan ZC, Xu XY, et al. Accuracy and repeatability of computer aided cervical vertebra landmarking in cephalogram[J].J Huazhong Univ Sci Tech (Med Sci), 2012, 32(1): 119-123.
28 冯筱妍, 卢诗娟, 李一鸣, 等. 基于锥形线束CT数据的智能颈椎骨龄评估系统的建立[J]. 浙江大学学报(医学版), 2021, 50(2): 187-194.
Feng XY, Lu SJ, Li YM, et al. Establishment of an intelligent cervical vertebrae maturity assessment system based on cone beam CT data[J]. J Zhejiang Univ (Med Sci), 2021, 50(2): 187-194.
29 Noothout JMH, De Vos BD, Wolterink JM, et al. Deep learning-based regression and classification for automatic landmark localization in medical images[J]. IEEE Trans Med Imaging, 2020, 39(12): 4011-4022.
30 Arik SÖ, Ibragimov B, Xing L. Fully automated quantitative cephalometry using convolutional neural networks[J]. J Med Imag, 2017, 4(1): 014501.
31 Dot G, Rafflenbeul F, Arbotto M, et al. Accuracy and reliability of automatic three-dimensional cephalometric landmarking[J]. Int J Oral Maxillofac Surg, 2020, 49(10): 1367-1378.
32 Eckert-Lind C, Busch AS, Petersen JH, et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls: a systematic review and meta-analysis[J]. JAMA Pediatr, 2020, 174(4): e195881.
33 Brix N, Ernst A, Lauridsen LLB, et al. Timing of puberty in boys and girls: a population-based study[J]. Paediatr Perinat Epidemiol, 2019, 33(1): 70-78.
[1] Zhao Zhihe.. Difficulty assessment of invisible orthodontic treatment based on treatment plan and tooth movement pattern [J]. Int J Stomatol, 2022, 49(4): 373-379.
[2] Wang Luming,Cao Xiao,Wu Linyue,Li Yuncong,Lei Bo,Niu Lin. Effect of Zn-doped bioactive glass nanoparticles on the mechanical properties of modified composite resin [J]. Int J Stomatol, 2022, 49(4): 404-411.
[3] He Hong.. Clinical diagnosis and strategies for early orthodontic treatment of Class Ⅲ malocclusion with tonsillar hypertrophy in children [J]. Int J Stomatol, 2022, 49(3): 249-254.
[4] Qin Siwen,Liao Li.. Strategies of vascularization in dental pulp regeneration [J]. Int J Stomatol, 2022, 49(3): 272-282.
[5] Ma Jianbin,Xue Chaoran,Wang Peiqi,Li Bin,Bai Ding.. Effect of 3D printing orthognathic surgical splints with different dental model offsets on occlusal precision [J]. Int J Stomatol, 2022, 49(3): 296-304.
[6] Ma Yu,Zuo Yu,Zhang Xin. Photodynamic therapy as an adjunct to periodontitis: a meta-analysis [J]. Int J Stomatol, 2022, 49(3): 305-316.
[7] Zhao Zhe,Wang Fu,Zheng Xiuli,An Na,Chen Jihua.. Research progress on measuring methods of tooth movement under functional load [J]. Int J Stomatol, 2022, 49(3): 362-366.
[8] Chen Yu,Jiang Huan,Liu Nan,Lu Chenmeng,Tang Zhongyuan,Han Ruyu,Hu Min. Effects of orthodontic treatment on changes in upper airway and peripheral structure in patients with skeletal Class Ⅱ malocclusion [J]. Int J Stomatol, 2019, 46(5): 578-584.
[9] Chen Xiwen, Zhou Jinru, Zhu Zhimin. Retention and relevant research progress of resin-bonded fixed bridges [J]. Inter J Stomatol, 2016, 43(5): 537-541.
[10] Huo Huan, Yin Jiayue, Ai Hongjun. Application progress on resin cements in ceramic restorations [J]. Inter J Stomatol, 2016, 43(5): 554-559.
[11] Qin Kun1, Zhang Dongpo2. Comparison of artifacts on magnetic resonance imaging caused by different porcelain-fused-to-metal crowns and metal crowns [J]. Inter J Stomatol, 2016, 43(5): 507-510.
[12] Chen Lijuan1, Meng Qingfei2, Wan Yanjun1. A clinical evaluation of IPS Empress ceramic veneers in esthetic restoration of anterior teeth with different kinds of veneer designs [J]. Inter J Stomatol, 2016, 43(5): 511-514.
[13] Shan Zhiyi, Xu Ziqing, Shen Gang. Research progress on three-dimensional finite-element analysis method for lingual orthodontics [J]. Inter J Stomatol, 2016, 43(5): 560-564.
[14] Niu Xuegang1, Wang Xiaoyong2. Research progress on restoration for dentition defects by combined support of implant and natural tooth [J]. Inter J Stomatol, 2016, 43(5): 614-618.
[15] Huang Min, Luo Yun, Wang Min. Relationship between the interproximal interface of adjacent teeth and food impaction [J]. Inter J Stomatol, 2016, 43(3): 303-308.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 146 -148 .
[9] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 461 -462 .
[10] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 138 -140 .