Int J Stomatol ›› 2022, Vol. 49 ›› Issue (3): 290-295.doi: 10.7518/gjkq.2022034

• Microbiology • Previous Articles     Next Articles

Research progress on the interactions between Enterococcus faecalis and other oral microorganisms

Liu Qianxi1(),Wu Jiayi2,Ren Biao3,Huang Ruijie1()   

  1. 1.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    3.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China School of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2021-06-01 Revised:2021-11-22 Online:2022-05-01 Published:2022-05-09
  • Contact: Ruijie Huang;
  • Supported by:
    National Natural Science Foundation of China(NSFC31800114);Sichuan University Innovation and Entrepreneurship Training Program under Grants(202010611316)


Interactions among different oral microbes play an important role in the occurrence and development of oral diseases. Enterococcus faecalis contributes to various inflammatory diseases by forming biofilm and secreting harmful substances, including gelatinase and cytolysin. It becomes an opportunistic pathogen in case of low immunity. Enterococcus faecalis can be detected together and interact with other pathogenic microbes, such as Candida albicans, Staphylococcus aureus, Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans and Streptococcus mutans from a series of oral lesions, including pulpitis, periapical periodontitis and periodontitis. This review summarised the research progress on studies about the interactions between Enterococcus faecalis and other oral pathogens and focuses on their combination effects in oral diseases to provide a new version for clinical prevention and treatment.

Key words: Enterococcus faecalis, Candida albicans, microbial interaction, oral disease

CLC Number: 

  • R 37


Tab 1

Mechanism and manifestation of synergistic pathogenesis between Enterococcus faecalis and common oral pathogens"













1 Falsetta ML, Koo H. Beyond mucosal infection: a role for C. albicans-streptococcal interactions in the pathogenesis of dental caries[J]. Curr Oral Health Rep, 2014, 1(1): 86-93.
2 Abisado RG, Benomar S, Klaus JR, et al. Bacterial quorum sensing and microbial community interactions[J]. mBio, 2018, 9(3): e02331-e02317.
3 Stubbendieck RM, Vargas-Bautista C, Straight PD. Bacterial communities: interactions to scale[J]. Front Microbiol, 2016, 7: 1234.
4 Colombo AV, Barbosa GM, Higashi D, et al. Quantitative detection of Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa in human oral epithelial cells from subjects with perio-dontitis and periodontal health[J]. J Med Microbiol, 2013, 62(Pt 10): 1592-1600.
5 Johnson EM, Flannagan SE, Sedgley CM. Coaggregation interactions between oral and endodontic Enterococcus faecalis and bacterial species isolated from persistent apical periodontitis[J]. J Endod, 2006, 32(10): 946-950.
6 Siqueira JF Jr, Rôças IN. Diversity of endodontic microbiota revisited[J]. J Dent Res, 2009, 88(11): 969-981.
7 Chávez de Paz LE, Davies JR, Bergenholtz G, et al. Strains of Enterococcus faecalis differ in their ability to coexist in biofilms with other root canal bacteria[J]. Int Endod J, 2015, 48(10): 916-925.
8 Gao Y, Jiang XQ, Lin DJ, et al. The starvation resistance and biofilm formation of Enterococcus faecalis in coexistence with Candida albicans, Streptococcus gordonii, Actinomyces viscosus, or Lactobacillus acidophilus[J]. J Endod, 2016, 42(8): 1233-1238.
9 龚闽, 侯本祥. 慢性根尖周炎感染根管内粪肠球菌和白色念珠菌的检测[J]. 北京口腔医学, 2012, 20(6): 310-313.
Gong M, Hou BX. Determination of root canal microorganisms isolated from teeth with chronic apical periodontitis[J]. Beijing J Stomatol, 2012, 20(6): 310-313.
10 Bertolini M, Ranjan A, Thompson A, et al. Candida albicans induces mucosal bacterial dysbiosis that promotes invasive infection[J]. PLoS Pathog, 2019, 15(4): e1007717.
11 Krishnamoorthy AL, Lemus AA, Solomon AP, et al. Interactions between Candida albicans and Enterococcus faecalis in an organotypic oral epithelial model[J]. Microorganisms, 2020, 8(11): 1771.
12 Bertolini MM, Xu H, Sobue T, et al. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes[J]. Mol Oral Microbiol, 2015, 30(4): 307-322.
13 Shekh RM, Roy U. Biochemical characterization of an anti-Candida factor produced by Enterococcus faecalis[J]. BMC Microbiol, 2012, 12: 132.
14 Graham CE, Cruz MR, Garsin DA, et al. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans[J]. Proc Natl Acad Sci U S A, 2017, 114(17): 4507-4512.
15 Deng L, Zou L, Wu J, et al. Voriconazole inhibits cross-kingdom interactions between Candida albicans and Actinomyces viscosus through the ergoste-rol pathway[J]. Int J Antimicrob Agents, 2019, 53(6): 805-813.
16 Qiu W, Ren B, Dai HQ, et al. Clotrimazole and eco-nazole inhibit Streptococcus mutans biofilm and vi-rulence in vitro[J]. Arch Oral Biol, 2017, 73: 113-120.
17 王峥, 周学东, 任彪. 白色念珠菌麦角甾醇通路影响变异链球菌致龋力的研究[J]. 四川大学学报(医学版), 2020, 51(6): 742-748.
Wang Z, Zhou XD, Ren B. Ergosterol pathway of Candida albicans promotes the growth and carioge-nic virulence of Streptococcus mutans[J]. J Sichuan Univ (Med Sci Ed), 2020, 51(6): 742-748.
18 Rôças IN, Hülsmann M, Siqueira JF Jr. Microorga-nisms in root canal-treated teeth from a German population[J]. J Endod, 2008, 34(8): 926-931.
19 Munson MA, Pitt-Ford T, Chong B, et al. Molecular and cultural analysis of the microflora associated with endodontic infections[J]. J Dent Res, 2002, 81(11): 761-766.
20 Deng DM, Hoogenkamp MA, Exterkate RA, et al. Influence of Streptococcus mutans on Enterococcus faecalis biofilm formation[J]. J Endod, 2009, 35(9): 1249-1252.
21 Li X, Hoogenkamp MA, Ling J, et al. Diversity of Streptococcus mutans strains in bacterial interspecies interactions[J]. J Basic Microbiol, 2014, 54(2): 97-103.
22 Jhajharia K, Parolia A, Shetty KV, et al. Biofilm in endodontics: a review[J]. J Int Soc Prev Community Dent, 2015, 5(1): 1-12.
23 Yonezawa H, Kuramitsu HK. Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5[J]. Antimicrob Agents Chemother, 2005, 49(2): 541-548.
24 Fukushima H, Kelstrup J, Fukushima S, et al. Chara-cterization and mode of action of a purified bacteriocin from the oral bacterium Streptococcus mutans RM-10[J]. Arch Oral Biol, 1985, 30(3): 229-234.
25 Frandsen EV, Pedrazzoli V, Kilian M. Ecology of viridans streptococci in the oral cavity and pharynx[J]. Oral Microbiol Immunol, 1991, 6(3): 129-133.
26 Chávez de Paz L, Svensäter G, Dahlén G, et al. Streptococci from root canals in teeth with apical periodontitis receiving endodontic treatment[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005, 100(2): 232-241.
27 Schirrmeister JF, Liebenow AL, Braun G, et al. Detection and eradication of microorganisms in root-filled teeth associated with periradicular lesions: an in vivo study[J]. J Endod, 2007, 33(5): 536-540.
28 Vickerman MM, Flannagan SE, Jesionowski AM, et al. A genetic determinant in Streptococcus gordonii Challis encodes a peptide with activity similar to that of enterococcal sex pheromone cAM373, which facilitates intergeneric DNA transfer[J]. J Bacteriol, 2010, 192(10): 2535-2545.
29 Mansfield JM, Herrmann P, Jesionowski AM, et al. Streptococcus gordonii pheromone s.g.cAM373 may influence the reservoir of antibiotic resistance determinants of Enterococcus faecalis origin in the oral metagenome[J]. J Med Microbiol, 2017, 66(11): 1635-1639.
30 Sedgley CM, Molander A, Flannagan SE, et al. Virulence, phenotype and genotype characteristics of endodontic Enterococcus spp.[J]. Oral Microbiol Immunol, 2005, 20(1): 10-19.
31 Sedgley CM, Lee EH, Martin MJ, et al. Antibiotic resistance gene transfer between Streptococcus gordonii and Enterococcus faecalis in root canals of teeth ex vivo[J]. J Endod, 2008, 34(5): 570-574.
32 Showsh SA, De Boever EH, Clewell DB. Vancomycin resistance plasmid in Enterococcus faecalis that encodes sensitivity to a sex pheromone also produced by Staphylococcus aureus[J]. Antimicrob Ag-ents Chemother, 2001, 45(7): 2177-2178.
33 Vickerman MM, Mansfield JM. Streptococcal pepti-des that signal Enterococcus faecalis cells carrying the pheromone-responsive conjugative plasmid pAM-373[J]. Mol Oral Microbiol, 2019, 34(6): 254-262.
34 Cariati P, Cabello-Serrano A, Monsalve-Iglesias F, et al. Meningitis and subdural empyema as complication of pterygomandibular space abscess upon tooth extraction[J]. J Clin Exp Dent, 2016, 8(4): e469-e472.
35 Grundmann H, Aires-de-Sousa M, Boyce J, et al. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat[J]. Lancet, 2006, 368(9538): 874-885.
36 Klevens RM, Edwards JR, Tenover FC, et al. Chan-ges in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003[J]. Clin Infect Dis, 2006, 42(3): 389-391.
37 Firth N, Fink PD, Johnson L, et al. A lipoprotein signal peptide encoded by the staphylococcal conjugative plasmid pSK41 exhibits an activity resembling that of Enterococcus faecalis pheromone cAD1[J]. J Bacteriol, 1994, 176(18): 5871-5873.
38 Zhu WM, Clark N, Patel JB. pSK41-like plasmid is necessary for Inc18-like vanA plasmid transfer from Enterococcus faecalis to Staphylococcus aureus in vitro[J]. Antimicrob Agents Chemother, 2013, 57(1): 212-219.
39 Zhu WM, Murray PR, Huskins WC, et al. Dissemination of an Enterococcus Inc18-Like vanA plasmid associated with vancomycin-resistant Staphylococcus aureus[J]. Antimicrob Agents Chemother, 2010, 54(10): 4314-4320.
40 Sakko M, Tjäderhane L, Rautemaa-Richardson R. Microbiology of root canal infections[J]. Prim Dent J, 2016, 5(2): 84-89.
41 Yoon DL, Kim S, Song H, et al. Detection of bacterial species in chronic periodontitis tissues at diffe-rent stages of disease severity[J]. J Bacteriol Virol, 2015, 45(4): 364-371.
42 Li XY, Zhou LM, Takai H, et al. Aggregatibacter actinomycetemcomitans lipopolysaccharide regulates bone sialoprotein gene transcription[J]. J Cell Biochem, 2012, 113(9): 2822-2834.
43 Im J, Baik JE, Kim KW, et al. Enterococcus faecalis lipoteichoic acid suppresses Aggregatibacter actinomycetemcomitans lipopolysaccharide-induced IL-8 expression in human periodontal ligament cells[J]. Int Immunol, 2015, 27(8): 381-391.
44 Im J, Baik JE, Lee D, et al. Lipoteichoic acid of Enterococcus faecalis interferes with Porphyromonas gingivalis lipopolysaccharide signaling via IRAK-M upregulation in human periodontal ligament cells[J]. Mol Oral Microbiol, 2020, 35(4): 146-157.
45 Kim HG, Kim NR, Gim MG, et al. Lipoteichoic a-cid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-alpha production in THP-1 cells and endotoxin shock in mice[J]. J Immunol, 2008, 180(4): 2553-2561.
46 Fukushima H, Kelstrup J, Fukushima S, et al. Chara-cterization and mode of action of a purified bacteriocin from the oral bacterium Streptococcus mutans RM-10[J]. Arch Oral Biol, 1985, 30(3): 229-234.
47 Viçosa GN, Botta C, Ferrocino I, et al. Staphylococcus aureus undergoes major transcriptional reorganization during growth with Enterococcus faecalis in milk[J]. Food Microbiol, 2018, 73: 17-28.
48 Nogueira Viçosa G, Vieira Botelho C, Botta C, et al. Impact of co-cultivation with Enterococcus faecalis over growth, enterotoxin production and gene expression of Staphylococcus aureus in broth and fresh cheeses[J]. Int J Food Microbiol, 2019, 308: 108291.
49 Jung S, Park OJ, Kim AR, et al. Lipoteichoic acids of lactobacilli inhibit Enterococcus faecalis biofilm formation and disrupt the preformed biofilm[J]. J Microbiol, 2019, 57(4): 310-315.
50 Kim AR, Kang MJ, Yoo YJ, et al. Lactobacillus plantarum lipoteichoic acid disrupts mature Enterococcus faecalis biofilm[J]. J Microbiol, 2020, 58(4): 314-319.
[1] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[2] Xiong Kaixin,Zou Ling. Correlation between Candida albicans, Actinomyces viscosus, and root caries [J]. Int J Stomatol, 2021, 48(2): 187-191.
[3] Chen Jing,Ge Ziyu,Yu Tingting,Zhang Yanzhen. Research progress on the correlation between Parkinson's disease and oral diseases [J]. Int J Stomatol, 2021, 48(2): 218-224.
[4] Li Fan,Zhang Lijuan,Tan Kaixuan,Zhang Ying,Lu Jie,Li Shanshan,Yang Fang. Antimicrobial effect of chlorhexidine on Candida albicans in vitro according to D2O-labeled single-cell Raman micro-spectroscopy [J]. Int J Stomatol, 2021, 48(1): 35-40.
[5] Yi Zumu,Wang Xinyu,Wu Yingying. Bacterial diversity of oral flora in patients with diabetes [J]. Int J Stomatol, 2020, 47(5): 522-529.
[6] Shui Yusen,Lü Xiaoying,Li Jingya,Yang Ran. Progress in pathogenic factors and mechanisms of Enterococcus faecalis in oral and systemic diseases [J]. Int J Stomatol, 2020, 47(2): 225-234.
[7] Hu Yao,Cheng Lei,Guo Qiang,Ren Biao. Research progress on cross-kingdom interactions between Candida albicans and common oral bacteria [J]. Int J Stomatol, 2019, 46(6): 663-669.
[8] Wen Shuqiong,Guo Junyi,Dai Wenxiao,Wang Dikan,Wang Zhi. Research progress on the mechanism of Candida albicans in oral carcinogenesis [J]. Int J Stomatol, 2019, 46(6): 705-710.
[9] Jiang Xue,Huang Danyuan,Liao Wen. Advances in KTiOPO4 laser for oral disease treatment [J]. Int J Stomatol, 2019, 46(4): 456-462.
[10] Wei Li,Jinglin Zhou. Research on oral metabonomics [J]. Int J Stomatol, 2019, 46(3): 249-252.
[11] Qian Du,Biao Ren,Xuedong Zhou,Xin Xu. The microbial ecology of root caries [J]. Int J Stomatol, 2019, 46(3): 326-332.
[12] Yilong Hao,Yu Zhou,Qianming Chen. Research progress on the risk factors of median rhomboid glossitis [J]. Int J Stomatol, 2019, 46(3): 333-338.
[13] Donglei Wu,Jing Liu. Research progress on the association between oxidative stress injury and certain oral diseases [J]. Inter J Stomatol, 2019, 46(1): 62-67.
[14] Yan Tao,Yu Zhou,Qianming. Chen. Research progress on oral manifestations of vitamin B12 deficiency [J]. Inter J Stomatol, 2019, 46(1): 78-83.
[15] Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .