Int J Stomatol ›› 2019, Vol. 46 ›› Issue (6): 663-669.doi: 10.7518/gjkq.2019081
• Reviews • Previous Articles Next Articles
Hu Yao,Cheng Lei,Guo Qiang,Ren Biao()
CLC Number:
[1] | Simón-Soro A, Tomás I, Cabrera-Rubio R , et al. Microbial geography of the oral cavity[J]. J Dent Res, 2013,92(7):616-621. |
[2] | Dupuy AK, David MS, Li L , et al. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal[J]. PLoS One, 2014,9(3):e90899. |
[3] | Krom BP, Kidwai S, Ten Cate JM . Candida and other fungal species: forgotten players of healthy oral microbiota[J]. J Dent Res, 2014,93(5):445-451. |
[4] | Wolcott R, Costerton JW, Raoult D , et al. The poly-microbial nature of biofilm infection[J]. Clin Micro-biol Infect, 2013,19(2):107-112. |
[5] | Nobile CJ, Johnson AD . Candida albicans biofilms and human disease[J]. Annu Rev Microbiol, 2015,69:71-92. |
[6] | Xu H, Jenkinson HF, Dongari-Bagtzoglou A . Innocent until proven guilty: mechanisms and roles of Stre-ptococcus-Candida interactions in oral health and disease[J]. Mol Oral Microbiol, 2014,29(3):99-116. |
[7] | Xiao J, Moon Y, Li L , et al. Candida albicans carriage in children with severe early childhood caries (S- ECC) and maternal relatedness[J]. PLoS One, 2016,11(10):e0164242. |
[8] | Harriott MM, Noverr MC . Importance of Candida-bacterial polymicrobial biofilms in disease[J]. Trends Microbiol, 2011,19(11):557-563. |
[9] | Falsetta ML, Klein MI, Colonne PM , et al. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo[J]. Infect Immun, 2014,82(5):1968-1981. |
[10] | Peters BM, Ovchinnikova ES, Krom BP , et al. Sta-phylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p[J]. Microbiology, 2012,158(Pt 12):2975-2986. |
[11] | Bowen WH, Koo H . Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms[J]. Caries Res, 2011,45(1):69-86. |
[12] | Dutton LC, Nobbs AH, Jepson K , et al. O-manno-sylation in Candida albicans enables development of interkingdom biofilm communities[J]. MBio, 2014,5(2):e00911. |
[13] | Gregoire S, Xiao J, Silva BB , et al. Role of glucosyl-transferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces[J]. Appl Environ Microbiol, 2011,77(18):6357-6367. |
[14] | Hwang G, Liu Y, Kim D , et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo[J]. PLoS Pathog, 2017,13(6):e1006407. |
[15] | Hwang G, Marsh G, Gao L , et al. Binding force dynamics of Streptococcus mutans-glucosyltrans-ferase B to Candida albicans[J]. J Dent Res, 2015,94(9):1310-1317. |
[16] | Matsui R, Cvitkovitch D . Acid tolerance mechanisms utilized by Streptococcus mutans[J]. Future Microbiol, 2010,5(3):403-417. |
[17] | Willems HM, Kos K, Jabra-Rizk MA , et al. Candida albicans in oral biofilms could prevent caries[J]. Pathog Dis, 2016,74(5). doi: 10.1093/femspd/ftw039. |
[18] | Řičicová M, Kucharíková S, Tournu H , et al. Candida albicans biofilm formation in a new in vivo rat model[J]. Microbiology, 2010,156(Pt 3):909-919. |
[19] | Rath H, Feng D, Neuweiler I , et al. Biofilm formation by the oral pioneer colonizer Streptococcus gordonii: an experimental and numerical study[J]. FEMS Mic-robiol Ecol, 2017,93(3). doi: 10.1093/femsec/fix010. |
[20] | Bamford CV, Nobbs AH, Barbour ME , et al. Func-tional regions of Candida albicans hyphal cell wall protein Als3 that determine interaction with the oral bacterium Streptococcus gordonii[J]. Microbiology, 2015,161(Pt 1):18-29. |
[21] | Diaz PI, Xie Z, Sobue T , et al. Synergistic interaction between Candida albicans and commensal oral stre-ptococci in a novel in vitro mucosal model[J]. Infect Immun, 2012,80(2):620-632. |
[22] | Dutton LC, Paszkiewicz KH, Silverman RJ , et al. Transcriptional landscape of trans-kingdom com-munication between Candida albicans and Strepto-coccus gordonii[J]. Mol Oral Microbiol, 2016,31(2):136-161. |
[23] | Jack AA, Daniels DE, Jepson MA , et al. Strepto-coccus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans [J]. Microbiology, 2015,161(Pt 2):411-421. |
[24] | Jesionowski AM, Mansfield JM, Brittan JL , et al. Transcriptome analysis of Streptococcus gordonii Challis DL1 indicates a role for the biofilm-asso-ciated fruRBA operon in response to Candida albicans [J]. Mol Oral Microbiol, 2016,31(4):314-328. |
[25] | Montelongo-Jauregui D, Srinivasan A, Ramasubra-manian AK,et al. An in vitro model for oral mixed biofilms of Candida albicans and Streptococcus gordonii in synthetic saliva[J]. Front Microbiol, 2016,7:686. |
[26] | Montelongo-Jauregui D, Srinivasan A, Ramasubra-manian AK, et al. An in vitro model for Candida albicans-Streptococcus gordonii biofilms on titanium surfaces[J]. J Fungi (Basel), 2018,4(2). doi: 10.3390/ jof4020066. |
[27] | Ricker A, Vickerman M, Dongari-Bagtzoglou A . Streptococcus gordonii glucosyltransferase promotes biofilm interactions with Candida albicans[J]. J Oral Microbiol, 2014. doi: 10.3402/jom.v6.23419. |
[28] | de Carvalho Dias K, Barbugli PA, de Patto F , et al. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response[J]. BMC Microbiol, 2017,17(1):146. |
[29] | Kean R, Rajendran R, Haggarty J , et al. Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in Dual-species interactions[J]. Front Microbiol, 2017,8:258. |
[30] | Krause J, Geginat G, Tammer I . Prostaglandin E2 from Candida albicans stimulates the growth of Staphylococcus aureus in mixed biofilms[J]. PLoS One, 2015,10(8):e0135404. |
[31] | Li H, Zhang C, Liu P , et al. In vitro interactions be-tween fluconazole and minocycline against mixed cultures of Candida albicans and Staphylococcus aureus[J]. J Microbiol Immunol Infect, 2015,48(6):655-661. |
[32] | Lindsay AK, Hogan DA . Candida albicans: mole-cular interactions with Pseudomonas aeruginosa and Staphylococcus aureus[J]. Fungal Biol Rev, 2014,28(4):85-96. |
[33] | Nash EE, Peters BM, Palmer GE , et al. Morpho-genesis is not required for Candida albicans-Staphy-lococcus aureus intra-abdominal infection-mediated dissemination and lethal sepsis[J]. Infect Immun, 2014,82(8):3426-3435. |
[34] | Nash EE, Peters BM, Fidel PL , et al. Morphology-independent virulence of Candida species during polymicrobial intra-abdominal infections with Sta-phylococcus aureus[J]. Infect Immun, 2015,84(1):90-98. |
[35] | O’Donnell LE, Millhouse E, Sherry L , et al. Polymi-crobial Candida biofilms: friends and foe in the oral cavity[J]. FEMS Yeast Res, 2015,15(7). doi: 10.1093/ femsyr/fov077. |
[36] | Beenken KE, Blevins JS, Smeltzer MS . Mutation of sarA in Staphylococcus aureus limits biofilm for-mation[J]. Infect Immun, 2003,71(7):4206-4211. |
[37] | Harriott MM, Noverr MC . Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance[J]. Antimicrob Agents Chemother, 2009,53(9):3914-3922. |
[38] | Boyen F, Verstappen KM, De Bock M , et al. In vitro antimicrobial activity of miconazole and polymyxin B against canine meticillin-resistant Staphylococcus aureus and meticillin-resistant Staphylococcus pseu-dintermedius isolates[J]. Vet Dermatol, 2012,23(4):381-385. |
[39] | Memmi G, Nair DR, Cheung A . Role of ArlRS in autolysis in methicillin-sensitive and methicillin-resistant Staphylococcus aureus strains[J]. J Bacteriol, 2012,194(4):759-767. |
[40] | Kong EF, Tsui C, Kucharíková S , et al. Commensal protection of Staphylococcus aureus against anti-microbials by Candida albicans biofilm matrix[J]. MBio, 2016,7(5). doi: 10.1128/mBio.01365-16. |
[41] | Lister JL, Horswill AR . Staphylococcus aureus bio-films: recent developments in biofilm dispersal[J]. Front Cell Infect Microbiol, 2014,4:178. |
[42] | Nobre LS, Todorovic S, Tavares AF , et al. Binding of azole antibiotics to Staphylococcus aureus flavo-hemoglobin increases intracellular oxidative stress[J]. J Bacteriol, 2010,192(6):1527-1533. |
[43] | Peters BM, Jabra-Rizk MA, Scheper MA , et al. Mi-crobial interactions and differential protein expression in Staphylococcus aureus-Candida albicans dual-species biofilms[J]. FEMS Immunol Med Microbiol, 2010,59(3):493-503. |
[44] | Peters BM, Noverr MC . Candida albicans-Staphy-lococcus aureus polymicrobial peritonitis modulates host innate immunity[J]. Infect Immun, 2013,81(6):2178-2189. |
[45] | Rajendran R, Borghi E, Falleni M , et al. Acetylc-holine protects against Candida albicans infection by inhibiting biofilm formation and promoting hemocyte function in a Galleria mellonella infection model[J]. Eukaryot Cell, 2015,14(8):834-844. |
[46] | Schlecht LM, Peters BM, Krom BP , et al. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue[J]. Mi-crobiology, 2015,161(Pt 1):168-181. |
[47] | Weidt S, Haggarty J, Kean R , et al. A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms[J]. Metabolomics, 2016,12(12):189. |
[48] | Allonsius CN, van den Broek MFL, De Boeck I , et al. Interplay between Lactobacillus rhamnosus GG and Candida and the involvement of exopolysac-charides[J]. Microb Biotechnol, 2017,10(6):1753-1763. |
[49] | Jørgensen MR, Kragelund C, Jensen PØ , et al. Pro-biotic Lactobacillus reuteri has antifungal effects on oral Candida species in vitro[J]. J Oral Microbiol, 2017,9(1):1274582. |
[50] | Liang W, Guan G, Dai Y , et al. Lactic acid bacteria differentially regulate filamentation in two heritable cell types of the human fungal pathogen Candida albicans[J]. Mol Microbiol, 2016,102(3):506-519. |
[51] | Mailänder-Sánchez D, Braunsdorf C, Grumaz C , et al. Antifungal defense of probiotic Lactobacillus rhamnosus GG is mediated by blocking adhesion and nutrient depletion[J]. PLoS One, 2017,12(10):e0184438. |
[52] | Matsubara VH, Ishikawa KH, Ando-Suguimoto ES , et al. Probiotic bacteria alter pattern-recognition receptor expression and cytokine profile in a human macrophage model challenged with Candida albicans and Lipopolysaccharide[J]. Front Microbiol, 2017,8:2280. |
[53] | Ribeiro FC, de Barros PP, Rossoni RD , et al. Lacto-bacillus rhamnosus inhibits Candida albicans viru-lence factors in vitro and modulates immune system in Galleria mellonella[J]. J Appl Microbiol, 2017,122(1):201-211. |
[54] | Rossoni RD, Fuchs BB, de Barros PP, et al. Lacto-bacillus paracasei modulates the immune system of Galleria mellonella and protects against Candida al- bicans infection[J]. PLoS One, 2017,12(3):e0173332. |
[55] | Song YG, Lee SH . Inhibitory effects of Lactobacillus rhamnosus and Lactobacillus casei on Candida biofilm of denture surface[J]. Arch Oral Biol, 2017,76:1-6. |
[56] | Han Y, Kim B, Ban J , et al. A randomized trial of Lactobacillus plantarum CJLP133 for the treatment of atopic dermatitis[J]. Pediatr Allergy Immunol, 2012,23(7):667-673. |
[57] | Köhler GA, Assefa S, Reid G . Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans[J]. Infect Dis Obstet Gynecol, 2012,2012:636474. |
[58] | Wächtler B, Wilson D, Haedicke K , et al. From at-tachment to damage: defined genes of Candida albi-cans mediate adhesion, invasion and damage during interaction with oral epithelial cells[J]. PLoS One, 2011,6(2):e17046. |
[59] | Bachtiar EW, Bachtiar BM, Jarosz LM , et al. AI-2 of Aggregatibacter actinomycetemcomitans inhibits Candida albicans biofilm formation[J]. Front Cell Infect Microbiol, 2014,4:94. |
[60] | Janus MM, Crielaard W, Volgenant CM , et al. Can-dida albicans alters the bacterial microbiome of early in vitro oral biofilms[J]. J Oral Microbiol, 2017,9(1):1270613. |
[61] | Lambooij JM, Hoogenkamp MA, Brandt BW , et al. Fungal mitochondrial oxygen consumption induces the growth of strict anaerobic bacteria[J]. Fungal Genet Biol, 2017,109:1-6. |
[62] | Lopez-Medina E, Fan D, Coughlin LA , et al. Candida albicans inhibits Pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynjournal[J]. PLoS Pathog, 2015,11(8):e1005129. |
[63] | Fan D, Coughlin LA, Neubauer MM , et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization[J]. Nat Med, 2015,21(7):808-814. |
[64] | Imperi F, Massai F, Facchini M , et al. Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity[J]. Proc Natl Acad Sci USA, 2013,110(18):7458-7463. |
[65] | Mason KL, Erb Downward JR, Mason KD , et al. Candida albicans and bacterial microbiota interac-tions in the cecum during recolonization following broad-spectrum antibiotic therapy[J]. Infect Immun, 2012,80(10):3371-3380. |
[1] | Wen Shuqiong,Guo Junyi,Dai Wenxiao,Wang Dikan,Wang Zhi. Research progress on the mechanism of Candida albicans in oral carcinogenesis [J]. Int J Stomatol, 2019, 46(6): 705-710. |
[2] | Qian Du,Biao Ren,Xuedong Zhou,Xin Xu. The microbial ecology of root caries [J]. Int J Stomatol, 2019, 46(3): 326-332. |
[3] | Yilong Hao,Yu Zhou,Qianming Chen. Research progress on the risk factors of median rhomboid glossitis [J]. Int J Stomatol, 2019, 46(3): 333-338. |
[4] | Donglei Wu,Jing Liu. Research progress on the association between oxidative stress injury and certain oral diseases [J]. Inter J Stomatol, 2019, 46(1): 62-67. |
[5] | Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552. |
[6] | Cheng Xingqun, Deng Meng, Xu Xin, Zhou Xuedong.. Saliva and salivaomics in early diagnosis of diseases [J]. Inter J Stomatol, 2014, 41(2): 213-219. |
[7] | Li Yan, He Jinzhi, Xiao Liying, Zhou Xuedong.. Oral microbiome and diseases [J]. Inter J Stomatol, 2014, 41(1): 118-122. |
[8] | GONG Qi- mei, LING Jun- qi. Resear ch progr ess on r elationship between monocyte chemoattr actant protein- 1 [J]. Inter J Stomatol, 2008, 35(3): 277-277~279,288. |