Int J Stomatol ›› 2019, Vol. 46 ›› Issue (4): 475-480.doi: 10.7518/gjkq.2019065

• Reviews • Previous Articles     Next Articles

Research progress on antibacterial dental materials in the treatment of root caries

Feng Jin,Wu Hongkun()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Geriatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-08-14 Revised:2019-03-20 Online:2019-07-01 Published:2019-07-12
  • Supported by:
    This study was supported by Chengdu Science and Technology Benefit People Research and Development Project(2015-HM01-00357-SF)


Minerals are lost rapidly and caries develop quickly on root surfaces due to different tissue anatomies, histologies, and chemical compositions. Root caries are highly prevalent in the elderly and can negatively affect their oral health-related quality of life. The key to the treatment of root caries is to prevent the activity of caries lesions. Therefore, new antibacterial dental materials that can control root surface plaque and promote teeth remineralization have been widely studied. This paper reviews the current application and research progress on various new antimicrobial materials for the treatment of root caries with different development degrees.

Key words: antibacterial, root caries, dental material

CLC Number: 

  • R781.1

[1] Hayes M, Da Mata C, Cole M , et al. Risk indicators associated with root caries in independently living older adults[J]. J Dent, 2016,51:8-14.
[2] Kassebaum NJ, Bernabé E, Dahiya M , et al. Global burden of untreated caries: a systematic review and metaregression[J]. J Dent Res, 2015,94(5):650-658.
[3] Hayes M, Burke F, Allen PF . Incidence, prevalence and global distribution of root caries[J]. Monogr Oral Sci, 2017,26:1-8.
[4] Gu HJ, Ling JQ, Zhou XY , et al. Mineralising and antibacterial effects of modified calcium phosphate treatment on human root cementum[J]. BMC Oral Health, 2016,17(1):22.
[5] Zhou Y, Matin K, Shimada Y , et al. Evaluation of resin infiltration on demineralized root surface: an in vitro study[J]. Dent Mater J, 2017,36(2):195-204.
[6] 储冰峰, 刘洪臣, 王向 . 老年根龋的防治[J]. 中华老年口腔医学杂志, 2003,1(2):100-102.
Chu BF, Liu HC, Wang X . The prevention and treatment of root caries of old patients[J]. Chin J Geriatric Dent, 2003,1(2):100-102.
[7] 吴补领, 赵望泓 . 老年根面龋诊疗指南(讨论稿)[J]. 中华老年口腔医学杂志, 2016,14(2):116-119.
Wu BL, Zhao WH . Guidelines for diagnosis and treatment of root caries in elderly (discussion version)[J]. Chin J Geriatric Dent, 2016,14(2):116-119.
[8] Magalhães AC . Conventional preventive therapies (fluoride) on root caries lesions[J]. Monogr Oral Sci, 2017,26:83-87.
[9] Buzalaf MA, Pessan JP, Honório HM , et al. Mechanisms of action of fluoride for caries control[J]. Monogr Oral Sci, 2011,22:97-114.
[10] Wierichs RJ, Meyer-Lueckel H . Systematic review on noninvasive treatment of root caries lesions[J]. J Dent Res, 2015,94(2):261-271.
[11] Ekstrand KR . High fluoride dentifrices for elderly and vulnerable adults: does it work and if so, then why[J]. Caries Res, 2016,50(Suppl 1):15-21.
[12] Monse B, Heinrich-Weltzien R, Mulder J , et al. Caries preventive efficacy of silver diammine fluoride (SDF) and ART sealants in a school-based daily fluoride toothbrushing program in the Philippines[J]. BMC Oral Health, 2012,12:52.
[13] Peng JJ, Botelho MG, Matinlinna JP . Silver compounds used in dentistry for caries management: a review[J]. J Dent, 2012,40(7):531-541.
[14] Zhang W , McGrath C, Lo ECet al. Silver diamine fluoride and education to prevent and arrest root caries among community-dwelling elders[J]. Caries Res, 2013,47(4):284-290.
doi: 10.1159/000346620
[15] Gibson G, Jurasic MM, Wehler CJ , et al. Supplemental fluoride use for moderate and high caries risk adults: a systematic review[J]. J Public Health Dent, 2011,71(3):171-184.
doi: 10.1111/j.1752-7325.2011.00261.x
[16] Gluzman R, Katz RV, Frey BJ , et al. Prevention of root caries: a literature review of primary and secondary preventive agents[J]. Spec Care Dentist, 2013,33(3):133-140.
[17] Mei ML, Chu CH, Lo EC , et al. Preventing root caries development under oral biofilm challenge in an artificial mouth[J]. Med Oral Patol Oral Cir Bucal, 2013,18(4):e557-e563.
[18] Cai J, Palamara J, Manton DJ , et al. Status and progress of treatment methods for root caries in the last decade: a literature review[J]. Aust Dent J, 2018,63(1):34-54.
[19] Göstemeyer G, Schulze F, Paris S , et al. Arrest of root carious lesions via sodium fluoride, chlorhexidine and silver diamine fluoride in vitro[J]. Materials (Basel), 2017,11(1). doi: 10.3390/ma11010009.
[20] Baca P, Clavero J, Baca AP , et al. Effect of chlorhexidine-thymol varnish on root caries in a geriatric population: a randomized double-blind clinical trial[J]. J Dent, 2009,37(9):679-685.
[21] Davila JM, Buonocore MG, Greeley CB , et al. Adhesive penetration in human artificial and natural white spots[J]. J Dent Res, 1975,54(5):999-1008.
[22] Meyer-Lueckel H, Paris S . Improved resin infiltration of natural caries lesions[J]. J Dent Res, 2008,87(12):1112-1116.
[23] Weir E, Lawlor A, Whelan A , et al. The use of nanoparticles in anti-microbial materials and their characterization[J]. Analyst, 2008,133(7):835-845.
[24] Xiao SM, Liang KN, Weir MD , et al. Combining bioactive multifunctional dental composite with PAMAM for root dentin remineralization[J]. Materials (Basel), 2017,10(1). doi: 10.3390/ma10010089.
[25] Zhang K, Cheng L, Imazato S , et al. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties[J]. J Dent, 2013,41(5):464-474.
[26] Zhang K, Melo MA, Cheng L , et al. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms[J]. Dent Mater, 2012,28(8):842-852.
doi: 10.1016/
[27] Zhang K, Li F, Imazato S , et al. Dual antibacterial agents of nano-silver and 12-methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries[J]. J Biomed Mater Res Part B Appl Biomater, 2013,101(6):929-938.
[28] Ohta Y, Kondo Y, Kawada K , et al. Synjournal and antibacterial activity of quaternary ammonium salt-type antibacterial agents with a phosphate group[J]. J Oleo Sci, 2008,57(8):445-452.
[29] Murata H, Koepsel RR, Matyjaszewski K , et al. Permanent, non-leaching antibacterial surface—2: how high density cationic surfaces kill bacterial cells[J]. Biomaterials, 2007,28(32):4870-4879.
doi: 10.1016/j.biomaterials.2007.06.012
[30] Imazato S . Bio-active restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry[J]. Dent Mater J, 2009,28(1):11-19.
[31] Imazato S, Walls AW, Kuramoto A , et al. Penetration of an antibacterial dentine-bonding system into demineralized human root dentine in vitro[J]. Eur J Oral Sci, 2002,110(2):168-174.
[32] Imazato S, Kaneko T, Takahashi Y , et al. In vivo antibacterial effects of dentin primer incorporating MDPB[J]. Oper Dent, 2004,29(4):369-375.
[33] Imazato S, Ebi N, Tarumi H , et al. Bactericidal activity and cytotoxicity of antibacterial monomer MDPB[J]. Biomaterials, 1999,20(9):899-903.
[34] Kuramoto A, Imazato S, Walls AW , et al. Inhibition of root caries progression by an antibacterial adhesive[J]. J Dent Res, 2005,84(1):89-93.
[35] Rolland SL ,McCabe JF,Imazato S,, et al. A randomised trial comparing the antibacterial effects of dentine primers against bacteria in natural root caries[J]. Caries Res, 2011,45(6):574-580.
doi: 10.1159/000334623
[36] Zhang N, Melo MA, Chen C , et al. Development of a multifunctional adhesive system for prevention of root caries and secondary caries[J]. Dent Mater, 2015,31(9):1119-1131.
[37] Katsikogianni M, Missirlis YF . Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions[J]. Eur Cell Mater, 2004,8:37-57.
[38] Zhang N, Ma JF, Melo MA , et al. Protein-repellent and antibacterial dental composite to inhibit biofilms and caries[J]. J Dent, 2015,43(2):225-234.
[39] Nomura R, Morita Y, Matayoshi S , et al. Inhibitory effect of surface pre-reacted glass-ionomer (S-PRG) eluate against adhesion and colonization by Streptococcus mutans[J]. Sci Rep, 2018,8(1):5056.
[40] 田洪琰, 于鹏, 袁重阳 , 等. 树脂基覆膜材料对牙根面保护作用的耐久性[J]. 北京大学学报(医学版), 2016,48(5):889-893.
Tian HY, Yu P, Yuan CY , et al. Durability of protective effect of resin-based coating material on root surface[J]. J Peking Univ (Health Sci), 2016,48(5):889-893.
[41] Burrow MF, Stacey MA . Management of cavitated root caries lesions: minimum intervention and alternatives[J]. Monogr Oral Sci, 2017,26:106-114.
[42] Zhang N, Zhang K, Melo MA , et al. Effects of long-term water-aging on novel anti-biofilm and protein-repellent dental composite[J]. Int J Mol Sci, 2017,18(1). doi: 10.3390/ijms18010186.
[43] Peumans M, Van Meerbeek B, Lambrechts P , et al. The influence of direct composite additions for the correction of tooth form and/or position on periodontal health. A retrospective study[J]. J Periodontol, 1998,69(4):422-427.
[44] Thomé T, Mayer MP, Imazato S , et al. In vitro analysis of inhibitory effects of the antibacterial monomer MDPB-containing restorations on the progression of secondary root caries[J]. J Dent, 2009,37(9):705-711.
[45] Li F, Wang P, Weir MD , et al. Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model[J]. Acta Biomater, 2014,10(6):2804-2813.
[46] Randall RC, Wilson NH . Glass-ionomer restoratives: a systematic review of a secondary caries treatment effect[J]. J Dent Res, 1999,78(2):628-637.
[47] Yap AU, Khor E, Foo SH . Fluoride release and antibacterial properties of new-generation tooth-colored restoratives[J]. Oper Dent, 1999,24(5):297-305.
[48] Weerheijm KL Kreulen CM, de Soet JJ, et al. , Bacterial counts in carious dentine under restorations: 2-year in vivo effects[J]. Caries Res, 1999,33(2):130-134.
[49] Feng J, Cheng L, Zhou XD , et al. In situ antibiofilm effect of glass-ionomer cement containing dimethylaminododecyl methacrylate[J]. Dent Mater, 2015,31(8):992-1002.
[1] Wang Huan,Liu Yang,Qi Mengchun,Li Jingyi,Liu Mengnan,Sun Hong. Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation [J]. Int J Stomatol, 2020, 47(4): 439-444.
[2] Qian Du,Biao Ren,Xuedong Zhou,Xin Xu. The microbial ecology of root caries [J]. Int J Stomatol, 2019, 46(3): 326-332.
[3] Yuhao Liu,Quan Yuan,Shiwen Zhang. Recent research progress on the drug-loaded antibacterial coatings of titanium implants based on covalent grafting [J]. Inter J Stomatol, 2019, 46(2): 228-233.
[4] Mengqi Liu,Kuo Gai,Li Jiang. Research progress on oral implant materials with antimicrobial properties [J]. Inter J Stomatol, 2018, 45(5): 516-521.
[5] Xueyang Deng,Lanlan Pan,Ting Hu,Wenhua Li,Xuerong. Xiang. Preparation of graphene oxide coatings on titanium alloy surface [J]. Inter J Stomatol, 2018, 45(5): 539-545.
[6] Liu Dan, Ren Biao, Cheng Lei.. Research development of silver nanoparticle on prevention and treatment of oral infectious disease [J]. Inter J Stomatol, 2018, 45(4): 408-413.
[7] Zeng Yue, Xia Haibin, Wang Min. Research progress on the mechanical and antibacterial properties of nanomaterial-modified denture base [J]. Inter J Stomatol, 2018, 45(4): 455-458.
[8] Wang Nan, Lian Yunmin,Gao Lan,Ma Xuemin. The inhibition of the organosilicon quaternary ammonium salt treated pure titanium to the Candida albicans [J]. Inter J Stomatol, 2017, 44(2): 175-178.
[9] Li Hongting1, Liu Tianshuang2. Influence of plasma treatment on the bonding property of dental restorative materials [J]. Inter J Stomatol, 2017, 44(2): 214-217.
[10] Chen Hui, Cheng Lei.. Research progress on anti-caries dental adhesives [J]. Inter J Stomatol, 2017, 44(1): 92-97.
[11] Liu Yi1, Zhou Rongjing2, Fei Wei1.. Immunohistochemical localization and antimicrobial properties of high mobility group protein N2 [J]. Inter J Stomatol, 2016, 43(6): 661-665.
[12] Zhao Fujian, Wang Zhenshi, Shi Lianshui. Research status of antibacterial coating on orthodontic brackets [J]. Inter J Stomatol, 2016, 43(2): 239-243.
[13] Sun Lei, Xia Rong.. Research progress on antibacterial titanium-based implant surface modification [J]. Inter J Stomatol, 2015, 42(4): 475-479.
[14] Yang Xiaoyu, Yang Tao, Liu Changhong, Huang Chengwei, Li Shiyi. Preliminary study on the mechanism of antimicrobial activity of peptide P9-0 on pathogens causing oral infection [J]. Inter J Stomatol, 2015, 42(3): 276-280.
[15] Wang Suping, Cheng Lei, Zhou Xuedong. Research progress on antibacterial nanoparticles in resin composite [J]. Inter J Stomatol, 2013, 40(6): 750-753.
Full text



[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[8] . [J]. Inter J Stomatol, 2008, 35(S1): .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .