Inter J Stomatol ›› 2019, Vol. 46 ›› Issue (1): 62-67.doi: 10.7518/gjkq.2019.01.011

• Reviews • Previous Articles     Next Articles

Research progress on the association between oxidative stress injury and certain oral diseases

Donglei Wu,Jing Liu()   

  1. School of Stomatology, Jinan University, Guangzhou 510630, China
  • Received:2018-02-03 Revised:2018-10-12 Online:2019-01-01 Published:2019-01-11
  • Contact: Jing Liu E-mail:tjliu@jnu.edu.cn
  • Supported by:
    This study was supported by Excellent Talents Funding of Jinan University(51025036)

Abstract:

Oxidative stress is a state in which oxidation exceeds the antioxidant systems when the endogenous antioxidant system cannot effectively remove the large amount of free radicals accumulated in the body. It participates in the development of various diseases. The oral cavity is usually attacked by multiple endogenous or exogenous stimulations, which can lead to stress injury. This article reviews the research progress of oxidative stress in oral and maxillofacial regions induced by various peripheral stimuli and its correlation with related diseases, including temporomandibular disorders, masticatory muscle diseases, periodontal diseases, oral cancer and precancerous lesions. It also provides a new idea for the etiologic investigation, diagnosis and treatment of oral diseases from the perspective of oxidative stress. Moreover, it provides an update of the literature concerning the association of oxidative stress with pathological conditions related to oral cavity, focusing on the diagnostic and therapeutic importance of the tests based on saliva specimens in a preventive perspective.

Key words: oral diseases, oxidative stress, antioxidant, reactive oxygen species

CLC Number: 

  • R781

TrendMD: 
[1] Poprac P, Jomova K, Simunkova M , et al. Targeting free radicals in oxidative stress-related human dis-eases[J]. Trends Pharmacol Sci, 2017,38(7):592-607.
doi: 10.1016/j.tips.2017.04.005 pmid: 28551354
[2] Valko M, Leibfritz D, Moncol J , et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Biochem Cell Biol, 2007,39(1):44-84.
doi: 10.1016/j.biocel.2006.07.001
[3] Moloney JN, Cotter TG . ROS signalling in the bio-logy of cancer[J]. Semin Cell Dev Biol, 2018,80:50-64.
doi: 10.1016/j.semcdb.2017.05.023 pmid: 28587975
[4] Kawai Y, Kubota E, Okabe E . Reactive oxygen spe-cies participation in experimentally induced arthritis of the temporomandibular joint in rats[J]. J Dent Res, 2000,79(7):1489-1495.
doi: 10.1177/00220345000790071001
[5] Lee MC, Kawai Y, Shoji H , et al. Evidence of re-active oxygen species generation in synovial fluid from patients with temporomandibular disease by electron spin resonance spectroscopy[J]. Redox Rep, 2004,9(6):331-336.
doi: 10.1179/135100004225006830 pmid: 15720828
[6] Etöz OA, Akçay H, Neselioğlu S , et al. Total antio-xidant capacity and total oxidant status of synovial fluids in patients with temporomandibular joint pain and dysfunction[J]. Clin Oral Investig, 2012,16(6):1557-1561.
doi: 10.1007/s00784-011-0666-0 pmid: 22249561
[7] Ishimaru K, Ohba S, Yoshimura H , et al. Antioxidant capacity of synovial fluid in the temporomandibular joint correlated with radiological morphology of temporomandibular disorders[J]. Br J Oral Maxillo-fac Surg, 2015,53(2):114-120.
doi: 10.1016/j.bjoms.2014.10.006 pmid: 25457626
[8] Nitzan DW, Goldfarb A, Gati I , et al. Changes in the reducing power of synovial fluid from temporo-mandibular joints with ‘anchored disc phenomenon’[J]. J Oral Maxillofac Surg, 2002,60(7):735-740.
doi: 10.1053/joms.2002.33238 pmid: 12089684
[9] Rodríguez de Sotillo D, Velly AM, Hadley M , et al. Evidence of oxidative stress in temporomandibular disorders: a pilot study[J]. J Oral Rehabil, 2011,38(10):722-728.
doi: 10.1111/j.1365-2842.2011.02216.x pmid: 3153598
[10] Yamaza T, Masuda KF, Atsuta I , et al. Oxidative stress-induced DNA damage in the synovial cells of the temporomandibular joint in the rat[J]. J Dent Res, 2004,83(8):619-624.
doi: 10.1177/154405910408300807 pmid: 15271970
[11] Ueno T, Yamada M, Sugita Y , et al. N-acetyl cysteine protects TMJ chondrocytes from oxidative stress[J]. J Dent Res, 2011,90(3):353-359.
doi: 10.1177/0022034510388035 pmid: 21088145
[12] Lecarpentier Y . Physiological role of free radicals in skeletal muscles[J]. J Appl Physiol (1985), 2007,103(6):1917-1918.
doi: 10.1152/japplphysiol.01047.2007
[13] Magalhães J, Ascensão A, Soares JM , et al. Acute and severe hypobaric hypoxia increases oxidative stress and impairs mitochondrial function in mouse skeletal muscle[J]. J Appl Physiol (1985), 2005,99(4):1247-1253.
doi: 10.1152/japplphysiol.01324.2004 pmid: 15905323
[14] Cui M, Li Q, Zhang M , et al. Long-term curcumin treatment antagonizes masseter muscle alterations induced by chronic unpredictable mild stress in rats[J]. Arch Oral Biol, 2014,59(3):258-267.
doi: 10.1016/j.archoralbio.2013.12.001 pmid: 24581847
[15] Iyomasa MM, Fernandes FS, Iyomasa DM , et al. Metabolic changes in masseter muscle of rats sub-mitted to acute stress associated with exodontia[J]. PLoS One, 2015,10(6):e0128397.
doi: 10.1371/journal.pone.0128397 pmid: 4459827
[16] Loyola BM, Nascimento GC, Fernández RA , et al. Chronic stress effects in contralateral medial pter-ygoid muscle of rats with occlusion alteration[J]. Physiol Behav, 2016,164(PtA):369-375.
doi: 10.1016/j.physbeh.2016.06.028 pmid: 27342425
[17] Powers SK, Smuder AJ, Judge AR . Oxidative stress and disuse muscle atrophy: cause or consequence[J]. Curr Opin Clin Nutr Metab Care, 2012,15(3):240-245.
doi: 10.1152/japplphysiol.01202.2006 pmid: 22466926
[18] Spassov A, Gredes T, Gedrange T , et al. Increased oxidative stress in dystrophin deficient (mdx) mice masticatory muscles[J]. Exp Toxicol Pathol, 2011,63(6):549-552.
doi: 10.1016/j.etp.2010.04.006 pmid: 20471229
[19] Gedrange T, Lupp A, Walter B , et al. Oxidative state and histological changes in muscles of mastication after conditioning training[J]. Exp Toxicol Pathol, 2001,53(1):89-96.
doi: 10.1078/0940-2993-00168 pmid: 11370740
[20] Steinbacher P, Eckl P . Impact of oxidative stress on exercising skeletal muscle[J]. Biomolecules, 2015,5(2):356-377.
doi: 10.3390/biom5020356
[21] Debold EP . Potential molecular mechanisms under-lying muscle fatigue mediated by reactive oxygen and nitrogen species[J]. Front Physiol, 2015,6:239.
doi: 10.3389/fphys.2015.00239 pmid: 4555024
[22] 沈妍欣, 郭淑娟, 吴亚菲 . 慢性牙周炎的氧化应激及抗氧化治疗研究进展[J]. 中华口腔医学杂志, 2016,51(7) : 442-446.
doi: 10.3760/cma.j.issn.1002-0098.2016.07.013
Shen YX, Guo SJ, Wu YF . Oxidative stress and antioxitant therapy of chronic periodontitis[J]. Chin J Stomatol, 2016,51(7):442-446.
doi: 10.3760/cma.j.issn.1002-0098.2016.07.013
[23] Liu Z, Liu Y, Song Y , et al. Systemic oxidative stress biomarkers in chronic periodontitis: a meta-analysis[J]. Dis Markers, 2014,2014:931083.
doi: 10.1155/2014/931083 pmid: 25477703
[24] Biju T, Shabeer MM, Amitha R , et al. Comparative evaluation of serum superoxide dismutase and glu-tathione levels in periodontally diseased patients: an interventional study[J]. Indian J Dent Res, 2014,25(5):613-616.
doi: 10.4103/0970-9290.147105 pmid: 25511061
[25] Oktay S, Chukkapalli SS, Rivera-Kweh MF , et al. Periodontitis in rats induces systemic oxidative stress that is controlled by bone-targeted antiresorptives[J]. J Periodontol, 2015,86(1):137-145.
doi: 10.1902/jop.2014.140302 pmid: 25101489
[26] Wu W, Yang N, Feng X , et al. Effect of vitamin C administration on hydrogen peroxide-induced cyto-toxicity in periodontal ligament cells[J]. Mol Med Rep, 2015,11(1):242-248.
doi: 10.3892/mmr.2014.2712 pmid: 25333298
[27] Waddington RJ, Moseley R, Embery G . Reactive oxygen species: a potential role in the pathogenesis of periodontal diseases[J]. Oral Dis, 2000,6(3):138-151.
doi: 10.1111/j.1601-0825.2000.tb00325.x pmid: 10822357
[28] Gölz L, Memmert S, Rath-Deschner B , et al. LPS from P. gingivalis and hypoxia increases oxidative stress in periodontal ligament fibroblasts and contri-butes to periodontitis[J]. Mediators Inflamm, 2014,2014:986264.
doi: 10.1155/2014/986264 pmid: 4211166
[29] Korde SD, Basak A, Chaudhary M , et al. Enhanced nitrosative and oxidative stress with decreased total antioxidant capacity in patients with oral precancer and oral squamous cell carcinoma[J]. Oncology, 2011,80(5/6):382-389.
doi: 10.1159/000329811 pmid: 21829039
[30] Choudhari SK, Chaudhary M, Gadbail AR , et al. Oxidative and antioxidative mechanisms in oral cancer and precancer: a review[J]. Oral Oncol, 2014,50(1):10-18.
doi: 10.1016/j.oraloncology.2013.09.011 pmid: 24126222
[31] Agha-Hosseini F, Mirzaii-Dizgah I, Farmanbar N , et al. Oxidative stress status and DNA damage in saliva of human subjects with oral lichen planus and oral squamous cell carcinoma[J]. J Oral Pathol Med, 2012,41(10):736-740.
doi: 10.1111/j.1600-0714.2012.01172.x pmid: 22582895
[32] Bose KS, Vyas P, Singh M . Plasma non-enzymatic antioxidants-vitamin C, E, β-carotenes, reduced glu-tathione levels and total antioxidant activity in oral sub mucous fibrosis[J]. Eur Rev Med Pharmacol Sci, 2012,16(4):530-532.
doi: 10.5897/AJPP10.012 pmid: 22696882
[33] Chitra S, Balasubramaniam M, Hazra J . Effect of α-tocopherol on salivary reactive oxygen species and trace elements in oral submucous fibrosis[J]. Ann Clin Biochem, 2012,49(Pt 3):262-265.
doi: 10.1258/acb.2011.011050 pmid: 22337705
[34] Li B, Lu M, Jiang XX , et al. Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma[J]. J Nat Med, 2017,71(2):433-441.
doi: 10.1007/s11418-017-1076-7 pmid: 28176233
[35] Qin X, Kuang H, Chen L , et al. Coexpression of growth differentiation factor 11 and reactive oxygen species in metastatic oral cancer and its role in in-ducing the epithelial to mesenchymal transition[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2017,123(6):697-706.
doi: 10.1016/j.oooo.2017.03.010 pmid: 28478937
[36] Lee SS, Tsai CH, Tsai LL , et al. β-catenin expression in areca quid chewing-associated oral squamous cell carcinomas and upregulated by arecoline in human oral epithelial cells[J]. J Formos Med Assoc, 2012,111(4):194-200.
doi: 10.1016/j.jfma.2010.11.002 pmid: 22526207
[37] Lee SS, Tsai CH, Yang SF , et al. Hypoxia inducible factor-1α expression in areca quid chewing-asso-ciated oral squamous cell carcinomas[J]. Oral Dis, 2010,16(7):696-701.
doi: 10.1111/j.1601-0825.2010.01680.x pmid: 20534015
[1] Ding Xu,Li Xin,Li Yan,Xia Boyuan,Yu Weixian. Research progress on the relationship among oxidative stress, mitochondrial quality control, and periodontitis [J]. Int J Stomatol, 2021, 48(4): 385-390.
[2] Zhou Feng,Chen Ye,Chen Chen,Zhang Yining,Geng Ruiman,Liu Ji. Mechanism of sirtuin 1 in regulating periodontitis [J]. Int J Stomatol, 2021, 48(3): 341-346.
[3] Chen Jing,Ge Ziyu,Yu Tingting,Zhang Yanzhen. Research progress on the correlation between Parkinson's disease and oral diseases [J]. Int J Stomatol, 2021, 48(2): 218-224.
[4] Wu Nan,Li Bin. Inhibitory effect of pyrroloquinoline quinone on epithelial-mesenchymal transition in tongue squamous cell carcinoma cells [J]. Int J Stomatol, 2020, 47(4): 406-412.
[5] Hu Yao,Cheng Lei,Guo Qiang,Ren Biao. Research progress on cross-kingdom interactions between Candida albicans and common oral bacteria [J]. Int J Stomatol, 2019, 46(6): 663-669.
[6] Zhuo Yang,Shengdan Zhang,Chengcheng Liu,Yi Ding. Research progress on salivary markers for diagnosis of aggressive periodontitis [J]. Inter J Stomatol, 2019, 46(1): 55-61.
[7] Chen Xiuchun, Zhang Zhimin, Hong Lihua, Zhang Yaqi, Zheng Peng, Li Wenyue. Cytotoxic mechanism of triethylene glycol dimethacrylate [J]. Inter J Stomatol, 2018, 45(2): 209-213.
[8] Zhang Peng, Ding Yi, Wang Qi. Research on the role of inflammaging in diabetes mellitus-associated periodontitis [J]. Inter J Stomatol, 2017, 44(6): 664-668.
[9] Cheng Xingqun, Deng Meng, Xu Xin, Zhou Xuedong.. Saliva and salivaomics in early diagnosis of diseases [J]. Inter J Stomatol, 2014, 41(2): 213-219.
[10] Li Yan, He Jinzhi, Xiao Liying, Zhou Xuedong.. Oral microbiome and diseases [J]. Inter J Stomatol, 2014, 41(1): 118-122.
[11] Huang Long, Jian Xinchun.. Areca nut-related carcinogens and oral cancer [J]. Inter J Stomatol, 2014, 41(1): 102-107.
[12] Zhao Fei, Wang Ge.. Research progress on the cell regulation mechanisms of chronic toxicity of dental casting alloys [J]. Inter J Stomatol, 2012, 39(2): 244-247.
[13] Li Huajing, Fu Yun.. Effect of advanced oxidative protein products on diabetes -associated periodontitis [J]. Inter J Stomatol, 2011, 38(6): 677-680.
[14] Xu Huixia, Fu Yun. . Role of oxidative stress in the pathogenesis of diabetes-related periodontitis [J]. Inter J Stomatol, 2011, 38(5): 592-595.
[15] FANG Jun-yan, LING Jun-qi. Research progress of resin monomer toxicity mechanism [J]. Inter J Stomatol, 2010, 37(3): 302-302~305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .