国际口腔医学杂志 ›› 2023, Vol. 50 ›› Issue (1): 37-42.doi: 10.7518/gjkq.2023009

• 牙周专栏 • 上一篇    下一篇

Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用

李佩桐(),时彬冕,许春梅,谢旭东,王骏()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院牙周病科 成都 610041
  • 收稿日期:2022-03-24 修回日期:2022-07-13 出版日期:2023-01-01 发布日期:2023-01-09
  • 通讯作者: 王骏
  • 作者简介:李佩桐,学士,Email:lptn@qq.com
  • 基金资助:
    国家自然科学基金面上项目(82071127);四川省重点研发计划(23ZDYF1722);四川大学华西口腔医院人才队伍建设科研经费资助项目(RCDWJS2020-12)

Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues

Li Peitong(),Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2022-03-24 Revised:2022-07-13 Online:2023-01-01 Published:2023-01-09
  • Contact: Jun. Wang
  • Supported by:
    National Natural Science Foundation of China General Project(82071127);Si-chuan Key Research and Development Program(23ZDYF1722);Research Funding Support Project for Talent Team Construction of West China Hospital of Stomatology, Sichuan University(RCDWJS2020-12)

摘要:

Hedgehog(Hh)信号通路在哺乳动物的组织发育和器官形成中发挥重要作用。Gli1是Hh信号通路中重要的转录因子之一,并已被证实为间充质干细胞(MSCs)可靠的体内标记物。Gli1阳性MSCs具有自我更新能力和多向分化潜能,在牙及牙周组织中可分化为多种功能细胞,包括成牙本质细胞、成牙骨质细胞、成纤维细胞和成骨细胞,参与组织的生长发育与稳态维持。本文对目前关于Gli1阳性MSCs在牙及牙周组织的分布与作用的研究进展作一综述,以期为牙及牙周组织的再生治疗提供新思路。

关键词: Gli1, 间充质干细胞, 生长发育, 稳态, 谱系示踪

Abstract:

The Hedgehog (Hh) signaling pathway plays a crucial role in tissue development and organogenesis. Gli1 is one of the key transcription factors in the Hh signaling pathway that has been identified to be a reliable marker for mesenchymal stem cells (MSCs) in vivo. Gli1+ MSCs possess self-renewal ability and multidirectional differentiation potential. In teeth and periodontal tissues, Gli1+ MSCs can differentiate into a variety of cells, including odontoblasts, cementoblasts, fibroblasts, and osteoblasts, that contribute to tissue growth and homeostasis. In this review, we aim to summarize the current progress in the research on the distribution and function of Gli1+ MSCs in teeth and periodontal tissues and provide new insights into regenerative therapy for teeth and periodontal tissues.

Key words: Gli1, mesenchymal stem cells, growth and development, homeostasis, lineage tracing

中图分类号: 

  • R 781

图1

Gli1+MSCs在牙及牙周组织的分布与分化"

1 Dominici M, le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317.
2 Mabuchi Y, Okawara C, Méndez-Ferrer S, et al. Cellular heterogeneity of mesenchymal stem/stromal ce-lls in the bone marrow[J]. Front Cell Dev Biol, 2021, 9: 689366.
3 Wilson A, Webster A, Genever P. Nomenclature and heterogeneity: consequences for the use of mesenchymal stem cells in regenerative medicine[J]. Regen Med, 2019, 14(6): 595-611.
4 Hosoya A, Shalehin N, Takebe H, et al. Sonic hedgehog signaling and tooth development[J]. Int J Mol Sci, 2020, 21(5): E1587.
5 Men Y, Wang YH, Yi YT, et al. Gli1+ periodontium stem cells are regulated by osteocytes and occlusal force[J]. Dev Cell, 2020, 54(5): 639-654.e6.
6 Kan C, Chen LJ, Hu YY, et al. Gli1-labeled adult mesenchymal stem/progenitor cells and hedgehog signaling contribute to endochondral heterotopic ossification[J]. Bone, 2018, 109: 71-79.
7 Franchi F, Peterson KM, Quandt K, et al. Impaired hedgehog-Gli1 pathway activity underlies the vascular phenotype of polycystic kidney disease[J]. Hypertension, 2020, 76(6): 1889-1897.
8 He J, Zuo QZ, Hu B, et al. A novel, liver-specific long noncoding RNA LINC01093 suppresses HCC progression by interaction with IGF2BP1 to facilitate decay of GLI1 mRNA[J]. Cancer Lett, 2019, 450: 98-109.
9 Cassandras M, Wang CQ, Kathiriya J, et al. Gli1+ mesenchymal stromal cells form a pathological niche to promote airway progenitor metaplasia in the fib-rotic lung[J]. Nat Cell Biol, 2020, 22(11): 1295-1306.
10 Guan WW, Zhang J, Chen J. Connection of GLI1 variants to congenital heart disease susceptibility: a case-control study[J]. Medicine (Baltimore), 2020, 99(27): e19868.
11 Kramann R, Goettsch C, Wongboonsin J, et al. Adventitial MSC-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease[J]. Cell Stem Cell, 2016, 19(5): 628-642.
12 Nüsslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila[J]. Nature, 1980, 287(5785): 795-801.
13 Rimkus TK, Carpenter RL, Qasem S, et al. Targeting the sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors[J]. Cancers (Basel), 2016, 8(2): E22.
14 Pak E, Segal RA. Hedgehog signal transduction: key players, oncogenic drivers, and cancer therapy[J]. Dev Cell, 2016, 38(4): 333-344.
15 Pietrobono S, Gagliardi S, Stecca B. Non-canonical hedgehog signaling pathway in cancer: activation of GLI transcription factors beyond smoothened[J]. Front Genet, 2019, 10: 556.
16 Jing D, Li CY, Yao K, et al. The vital role of Gli1+ mesenchymal stem cells in tissue development and homeostasis[J]. J Cell Physiol, 2021, 236(9): 6077-6089.
17 Taipale J, Cooper MK, Maiti T, et al. Patched acts catalytically to suppress the activity of smoothened[J]. Nature, 2002, 418(6900): 892-897.
18 Sabol M, Trnski D, Musani V, et al. Role of GLI transcription factors in pathogenesis and their potential as new therapeutic targets[J]. Int J Mol Sci, 2018, 19(9): E2562.
19 Janečková E, Feng JF, Li JY, et al. Dynamic activation of Wnt, Fgf, and Hh signaling during soft pa-late development[J]. PLoS One, 2019, 14(10): e0223879.
20 Skoda AM, Simovic D, Karin V, et al. The role of the Hedgehog signaling pathway in cancer: a comprehensive review[J]. Bosn J Basic Med Sci, 2018, 18(1): 8-20.
21 王韵, 谢旭东, 许春梅, 等. Gli1阳性细胞在牙周组织发育中的时空分布特点及功能研究[J]. 华西口腔医学杂志, 2020, 38(2): 128-132.
Wang Y, Xie XD, Xu CM, et al. Temporal and spatial distribution of Gli1+ cells and their function during periodontal development[J]. West China J Stomatol, 2020, 38(2): 128-132.
22 Warshawsky H, Smith CE. Morphological classification of rat incisor ameloblasts[J]. Anat Rec, 1974, 179(4): 423-446.
23 Seidel K, Marangoni P, Tang C, et al. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis[J]. Elife, 2017, 6: e24712.
24 Seidel K, Ahn CP, Lyons D, et al. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor[J]. Development, 2010, 137(22): 3753-3761.
25 Gerlach JC, Over P, Turner ME, et al. Perivascular mesenchymal progenitors in human fetal and adult liver[J]. Stem Cells Dev, 2012, 21(18): 3258-3269.
26 Zhao H, Feng JF, Seidel K, et al. Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor[J]. Cell Stem Cell, 2018, 23(1): 147.
27 Bitgood MJ, McMahon AP. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo[J]. Dev Biol, 1995, 172(1): 126-138.
28 Cobourne MT, Miletich I, Sharpe PT. Restriction of sonic hedgehog signalling during early tooth development[J]. Development, 2004, 131(12): 2875-2885.
29 Dassule HR, Lewis P, Bei M, et al. Sonic hedgehog regulates growth and morphogenesis of the tooth[J]. Development, 2000, 127(22): 4775-4785.
30 Chen S, Jing JJ, Yuan Y, et al. Runx2+ niche cells maintain incisor mesenchymal tissue homeostasis th-rough IGF signaling[J]. Cell Rep, 2020, 32(6): 108007.
31 Shi C, Yuan Y, Guo Y, et al. BMP signaling in regulating mesenchymal stem cells in incisor homeostasis[J]. J Dent Res, 2019, 98(8): 904-911.
32 Imhof T, Balic A, Heilig J, et al. Pivotal role of tenascin-W (-N) in postnatal incisor growth and periodontal ligament remodeling[J]. Front Immunol, 2020, 11: 608223.
33 Sharpe PT. Dental mesenchymal stem cells[J]. Development, 2016, 143(13): 2273-2280.
34 Pang YW, Feng JF, Daltoe F, et al. Perivascular stem cells at the tip of mouse incisors regulate tissue regeneration[J]. J Bone Miner Res, 2016, 31(3): 514-523.
35 Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals[J]. Development, 2012, 139(19): 3487-3497.
36 Ishikawa Y, Nakatomi M, Ida-Yonemochi H, et al. Quiescent adult stem cells in murine teeth are regulated by Shh signaling[J]. Cell Tissue Res, 2017, 369(3): 497-512.
37 Li C, Jing Y, Wang K, et al. Dentinal mineralization is not limited in the mineralization front but occurs along with the entire odontoblast process[J]. Int J Biol Sci, 2018, 14(7): 693-704.
38 Liu Y, Feng JF, Li JY, et al. An Nfic-hedgehog signaling cascade regulates tooth root development[J]. Development, 2015, 142(19): 3374-3382.
39 Hardcastle Z, Mo R, Hui CC, et al. The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants[J]. Development, 1998, 125(15): 2803-2811.
40 Feng JF, Jing JJ, Li JY, et al. BMP signaling orchestrates a transcriptional network to control the fate of mesenchymal stem cells in mice[J]. Development, 2017, 144(14): 2560-2569.
41 Xie X, Xu C, Zhao H, et al. A biphasic feature of Gli1+-mesenchymal progenitors during cementogenesis that is positively controlled by wnt/β-catenin signaling[J]. J Dent Res, 2021, 100(11): 1289-1298.
42 Liu AQ, Zhang LS, Chen J, et al. Mechanosensing by Gli1+ cells contributes to the orthodontic force-induced bone remodelling[J]. Cell Prolif, 2020, 53(5): e12810.
43 Panciera T, Azzolin L, Cordenonsi M, et al. Mechanobiology of YAP and TAZ in physiology and disease[J]. Nat Rev Mol Cell Biol, 2017, 18(12): 758-770.
44 Maurer M, Lammerding J. The driving force: nuclear mechanotransduction in cellular function, fate, and di-sease[J]. Annu Rev Biomed Eng, 2019, 21: 443-468.
45 Qi J, Zhou YL, Jiao ZY, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway[J]. Cell Physiol Biochem, 2017, 42(6): 2242-2254.
46 Kan C, Ding N, Yang JZ, et al. BMP-dependent, injury-induced stem cell niche as a mechanism of heterotopic ossification[J]. Stem Cell Res Ther, 2019, 10(1): 14.
47 Ji QJ, Hou JW, Yong XQ, et al. Targeted dual small interfering ribonucleic acid delivery via non-viral polymeric vectors for pulmonary fibrosis therapy[J]. Adv Mater, 2021, 33(12): e2007798.
[1] 徐书奎,张珊,谢新宇,马文盛. 上颌前方牵引矫治骨性Ⅲ类错畸形远期疗效稳定性的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 646-652.
[2] 石佳鑫,王淳艺,李精韬. Pierre Robin序列征患者腭裂临床治疗的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 237-242.
[3] 张宇宁,曾妮,张焙,石冰,郑谦. 咽后壁瓣咽成形术对腭裂术后患者颌面部生长影响的初步研究[J]. 国际口腔医学杂志, 2023, 50(1): 66-71.
[4] 张珊,葛晓磊,李杰,谢新宇,常维维,马文盛. 上颌前方牵引矫治对颌骨生长发育长期影响的Meta分析[J]. 国际口腔医学杂志, 2022, 49(5): 548-555.
[5] 黎静文,周力. 颈椎成熟法评估下颌骨骨龄的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 337-342.
[6] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[7] 刘嘉程,孟昭松,李宏捷,隋磊. 卵泡抑素在口腔颌面部发育中的作用及其治疗应用前景[J]. 国际口腔医学杂志, 2021, 48(5): 556-562.
[8] 叶冠琛,余晓雯,赵飞亚,俞梦飞,王柏翔,王慧明. 上颌窦提升术前上颌窦病变评估和处理的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 468-474.
[9] 邓诗勇,宫苹,谭震. 脑和肌肉芳香烃受体核转运样蛋白1基因调控口腔及全身骨代谢的作用[J]. 国际口腔医学杂志, 2021, 48(2): 198-204.
[10] 陈野, 周丰, 邬琼辉, 车会凌, 李佳璇, 申佳琪, 罗恩. 脂联素对骨髓间充质干细胞的作用及其调控机制[J]. 国际口腔医学杂志, 2021, 48(1): 58-63.
[11] 金作林. 颅面部生长发育与早期生长改良[J]. 国际口腔医学杂志, 2021, 48(1): 7-11.
[12] 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668.
[13] 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262.
[14] 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269.
[15] 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .