国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (6): 652-660.doi: 10.7518/gjkq.2020111

• 综述 • 上一篇    下一篇

循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展

李静雅1(),税钰森1,郭永文2()   

  1. 1.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医学院 成都 610041
    2.口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院正畸科 成都 610041
  • 收稿日期:2020-03-29 修回日期:2020-06-23 出版日期:2020-11-01 发布日期:2020-11-06
  • 通讯作者: 郭永文
  • 作者简介:李静雅,学士,Email: BeiBei980524@163.com
  • 基金资助:
    国家自然科学青年基金(81600896);四川大学华西口腔医院探索与研发项目(LCYJ2019-14)

Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress

Li Jingya1(),Shui Yusen1,Guo Yongwen2()   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-03-29 Revised:2020-06-23 Online:2020-11-01 Published:2020-11-06
  • Contact: Yongwen Guo
  • Supported by:
    Youth Program of National Natural Science Foundation of China(81600896);Research and Develop Program of West China Hospital of Stomatology, Sichuan University(LCYJ2019-14)

摘要:

正畸牙齿移动(OTM)是一个相当复杂的力学-生物学过程,其生物学基础是机械力介导下的牙周组织改建,表现为牙周膜压力侧的骨吸收和张力侧的骨沉积。人类牙周膜细胞(hPDLCs)具有分化为成骨细胞的能力,并且在维持体内稳态和牙周组织再生中起着重要作用。现今已有许多研究利用循环牵张应力(CTS)模拟正畸过程中的机械刺激是如何诱导张力侧hPDLCs向成骨细胞的分化过程。本文将综述hPDLCs作为应力感应细胞对力学信号做出初级感应,通过不同信号转导通路将初级信号转化为下游信号,调控hPDLCs基因表达及蛋白合成进而调控hPDLCs成骨分化,促进骨改建过程中如何响应CTS刺激,并着重于机械信号转导所涉及的分子信号及通路研究进展,为临床实施有效正畸牙齿移动,缩短正畸时间,提高正畸效率提供理论基础,并为正畸牙移动相关机制研究提供参考。

关键词: 循环牵张应力, 人牙周膜细胞, 机械刺激感应, 机械信号转导, 成骨分化

Abstract:

Orthodontic tooth movement (OTM) is a complex mechanical-biological mechanism, which is biologically based on mechanical-mediated periodontal tissue remodelling. Bone resorption on the pressure side and bone deposition on the tension side of the periodontal ligament could be observed. Human periodontal ligament cells (hPDLCs) were found to support osteogenic differentiation and periodontal tissue regeneration and maintain homeostasis. At present, many studies have used cyclic tension stress (CTS) for mechanical stimulation during orthodontic treatment to understand the osteogenic differentiation of tension-side hPDLCs. In this review, we will probe into how hPDLCs, as mechanosensitive cells, create initial induction to mechanical signals and then convert primary signals into downstream signals via different mechanotransduction signal pathways. After mechanosensitive cells are regulated, gene expression and protein synthesis are performed. Finally, the paradentium implements bone remodelling. Therefore, this review focuses on the molecular signals and pathways involved in this mechanical signal transduction to discuss how hPDLCs biologically respond to CTS stimulation. This review can provide theoretical evidence for shortening orthodontic treatment time and possible insights into the mechanisms of OTM for further studies.

Key words: cyclic tension stress, human periodontal ligament cells, mechanosensing, mechanotransduction, osteogenic differentiation

中图分类号: 

  • R783.5
[1] Lekic P, Mcculloch C. Periodontal ligament cell populations: the central role of fibroblasts in creating a unique tissue[J]. Anat Rec, 1996,245(2):327-341.
pmid: 8769671
[2] Weston CR, Davis RJ. The JNK signal transduction pathway[J]. Curr Opin Cell Biol, 2007,19(2):142-149.
doi: 10.1016/j.ceb.2007.02.001 pmid: 17303404
[3] Humphrey JD, Dufresne ER, Schwartz MA. Me-chanotransduction and extracellular matrix homeostasis[J]. Nat Rev Mol Cell Biol, 2014,15(12):802-812.
doi: 10.1038/nrm3896 pmid: 25355505
[4] Zeng Q, Guo Y, Liu Y, et al. Integrin-β1, not integrin- β5, mediates osteoblastic differentiation and ECM formation promoted by mechanical tensile strain[J]. Biol Res, 2015,48(1):25.
doi: 10.1186/s40659-015-0014-y
[5] Li S, Hua ZC. FAK expression: regulation and the-rapeutic potential[J]. Adv Cancer Res, 2008,101:45-61.
doi: 10.1016/S0065-230X(08)00403-X pmid: 19055942
[6] Sawada Y, Tamada M, Dubin-Thaler BJ, et al. Force sensing by mechanical extension of the Src family kinase substrate p130Cas[J]. Cell, 2006,127(5):1015-1026.
pmid: 17129785
[7] Wang Y, Zuo Z, Luo P, et al. The effect of cyclic tensile force on the actin cytoskeleton organization and morphology of human periodontal ligament cells[J]. Biochem Biophys Res Commun, 2018,506(4):950-955.
pmid: 30401563
[8] Gp N, Ej E, Gg G. FAK, talin and PIPKIγ regulate endocytosed integrin activation to polarize focal adhesion assembly[J]. Nat Cell Biol, 2016,18(5):491-503.
doi: 10.1038/ncb3333 pmid: 27043085
[9] Nam HY, Balaji Raghavendran HR, Pingguan-Mur-phy B, et al. Fate of tenogenic differentiation poten-tial of human bone marrow stromal cells by uniaxial stretching affected by stretch-activated calcium channel agonist gadolinium[J]. PLoS One, 2017,12(6):e0178117.
pmid: 28654695
[10] Boutahar N, Guignandon A, Vico L, et al. Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation[J]. J Biol Chem, 2004,279(29):30588-30599.
doi: 10.1074/jbc.M313244200 pmid: 15096502
[11] Leonardi R, Talic N F, Loreto C. MMP-13 (collagenase 3) immunolocalisation during initial orthodontic tooth movement in rats[J]. Acta Histochem, 2007,109(3):215-220.
doi: 10.1016/j.acthis.2007.01.002 pmid: 17350083
[12] Apajalahti S, Sorsa T, Railavo S, et al. The in vivo levels of matrix metalloproteinase-1 and-8 in gingival crevicular fluid during initial orthodontic tooth movement[J]. J Dent Res, 2003,82(12):1018-1022.
doi: 10.1177/154405910308201216 pmid: 14630906
[13] Kasper G, Glaeser JD, Geissler S, et al. Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior[J]. Stem Cells, 2007,25(8):1985-1994.
doi: 10.1634/stemcells.2006-0676 pmid: 17495113
[14] Tantilertanant Y, Niyompanich J, Everts V, et al. Cyclic tensile force-upregulated IL6 increases MMP3 expression by human periodontal ligament cells[J]. Arch Oral Biol, 2019,107:104495.
pmid: 31377584
[15] Jiang L, Tang Z. Expression and regulation of the ERK1/2 and p38 MAPK signaling pathways in periodontal tissue remodeling of orthodontic tooth movement[J]. Mol Med Rep, 2018,17(1):1499-1506.
doi: 10.3892/mmr.2017.8021 pmid: 29138812
[16] Katz S, Boland R, Santillan G. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-ac-tivated calcium influx, PKC and Src activation[J]. Int J Biochem Cell Biol, 2006,38(12):2082-2091.
pmid: 16893669
[17] Ren D, Wei F, Hu L, et al. Phosphorylation of Runx2, induced by cyclic mechanical tension via ERK1/2 pathway, contributes to osteodifferentiation of human periodontal ligament fibroblasts[J]. J Cell Physiol, 2015,230(10):2426-2436.
pmid: 25740112
[18] Papadopoulou A, Iliadi A, Eliades T, et al. Early res-ponses of human periodontal ligament fibroblasts to cyclic and static mechanical stretching[J]. Eur J Or-thod, 2017,39(3):258-263.
[19] Li L, Han M, Li S, et al. Cyclic tensile stress during physiological occlusal force enhances osteogenic differentiation of human periodontal ligament cells via ERK1/2-Elk1 MAPK pathway[J]. DNA Cell Biol, 2013,32(9):488-497.
pmid: 23781879
[20] Liu D, Wang Z, Zhan J, et al. Hydrogen sulfide pro-motes proliferation and neuronal differentiation of neural stem cells and protects hypoxia-induced de-crease in hippocampal neurogenesis[J]. Pharmacol Biochem Behav, 2014,116:55-63.
doi: 10.1016/j.pbb.2013.11.009 pmid: 24246910
[21] Song ZC, Li S, Dong JC, et al. Enamel matrix pro-teins regulate hypoxia-induced cellular biobehavior and osteogenic differentiation in human periodontal ligament cells[J]. Biotech Histochem, 2017,92(8):606-618.
pmid: 29205072
[22] Li L, Han MX, Li S, et al. Hypoxia regulates the proliferation and osteogenic differentiation of human periodontal ligament cells under cyclic tensile stress via mitogen-activated protein kinase pathways[J]. J Periodontol, 2014,85(3):498-508.
doi: 10.1902/jop.2013.130048 pmid: 23805815
[23] Wang Y, Hu B, Hu R, et al. TAZ contributes to osteo-genic differentiation of periodontal ligament cells under tensile stress[J]. J Periodontal Res, 2020,55(1):152-160.
doi: 10.1111/jre.12698 pmid: 31539181
[24] Kletsas D, Basdra EK, Papavassiliou AG. Effect of protein kinase inhibitors on the stretch-elicited c-Fos and c-Jun up-regulation in human PDL osteoblast-like cells[J]. J Cell Physiol, 2002,190(3):313-321.
doi: 10.1002/jcp.10052 pmid: 11857447
[25] Konstantonis D, Papadopoulou A, Makou M, et al. The role of cellular senescence on the cyclic stre-tching-mediated activation of MAPK and ALP expression and activity in human periodontal liga-ment fibroblasts[J]. Exp Gerontol, 2014,57:175-180.
doi: 10.1016/j.exger.2014.05.010 pmid: 24858180
[26] Yamashiro K, Myokai F, Hiratsuka K, et al. Oligonu-cleotide array analysis of cyclic tension-responsive genes in human periodontal ligament fibroblasts[J]. Int J Biochem Cell Biol, 2007,39(5):910-921.
pmid: 17409011
[27] Papadopoulou A, Iliadi A, Eliades T, et al. Early responses of human periodontal ligament fibroblasts to cyclic and static mechanical stretching[J]. Eur J Orthod, 2017,39(3):258-263.
pmid: 27932408
[28] Kook SH, Hwang JM, Park JS, et al. Mechanical force induces typeⅠ collagen expression in human periodontal ligament fibroblasts through activation of ERK/JNK and AP-1[J]. J Cell Biochem, 2009,106(6):1060-1067.
doi: 10.1002/jcb.22085 pmid: 19206162
[29] Franceschi RT, Xiao G, Jiang D, et al. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentia-tion[J]. Connect Tissue Res, 2003,44(1):109-116.
[30] Yamaguchi N, Chiba M, Mitani H. The induction of c-fos mRNA expression by mechanical stress in human periodontal ligament cells[J]. Arch Oral Biol, 2002,47(6):465-471.
pmid: 12102763
[31] Carnes DL, Maeder CL, Graves DT. Cells with os-teoblastic phenotypes can be explanted from human gingiva and periodontal ligament[J]. J Periodontol, 1997,68(7):701-707.
pmid: 9249643
[32] Li S, Li F, Zou S, et al. PTH1R signalling regulates the mechanotransduction process of cementoblasts under cyclic tensile stress[J]. Eur J Orthod, 2018,40(5):537-543.
doi: 10.1093/ejo/cjx099 pmid: 29394342
[33] Ono W, Sakagami N, Nishimori S, et al. Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation[J]. Nat Commun, 2016,7:11277.
pmid: 27068606
[34] Xu Q, Yuan X, Zhang X, et al. Mechanoadaptive responses in the pPeriodontium are coordinated by Wnt[J]. J Dent Res, 2019,98(6):689-697.
doi: 10.1177/0022034519839438 pmid: 30971171
[35] Clevers H, Nusse R. Wnt/β-catenin signaling and disease[J]. Cell, 2012,149(6):1192-1205.
pmid: 22682243
[36] He Y, Liu Z, Qiao C, et al. Expression and signi-ficance of Wnt signaling components and their target genes in breast carcinoma[J]. Mol Med Rep, 2014,9(1):137-143.
pmid: 24190141
[37] Chang M, Lin H, Fu H, et al. MicroRNA-195-5p regulates osteogenic differentiation of periodontal ligament cells under mechanical loading[J]. J Cell Physiol, 2017,232(12):3762-3774.
pmid: 28181691
[38] Yu W, Hu B, Shi X, et al. Nicotine inhibits osteo-genic differentiation of human periodontal ligament cells under cyclic tensile stress through canonical Wnt pathway and α7 nicotinic acetylcholine receptor[J]. J Periodontal Res, 2018,53(4):555-564.
doi: 10.1111/jre.12545 pmid: 29603740
[39] De Boer J, Wang HJ, Van Blitterswijk C. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells[J]. Tissue Eng, 2004,10(3/4):393-401.
[40] Mihara N, Chiba T, Yamaguchi K, et al. Minimal essential region for krüppel-like factor 5 expression and the regulation by specificity protein 3-GC box binding[J]. Gene, 2017,601:36-43.
doi: 10.1016/j.gene.2016.12.002 pmid: 27940107
[41] Chen Z, Zhang Q, Wang H, et al. Klf5 mediates odontoblastic differentiation through regulating dentin-specific extracellular matrix gene expression during mouse tooth development[J]. Sci Rep, 2017,7:46746.
doi: 10.1038/srep46746 pmid: 28440310
[42] Han N, Chen Z, Zhang Q. Expression of KLF5 in odontoblastic differentiation of dental pulp cells during in vitro odontoblastic induction and in vivo dental repair[J]. Int Endod J, 2017,50(7):676-684.
doi: 10.1111/iej.12672 pmid: 27334851
[43] Guo L, He P, No YR, et al. Krüppel-like factor 5 incorporates into the β-catenin/TCF complex in response to LPA in colon cancer cells[J]. Cell Signal, 2015,27(5):961-968.
doi: 10.1016/j.cellsig.2015.02.005 pmid: 25683913
[44] Fei Y, Xiao L, Doetschman T, et al. Fibroblast growth factor 2 stimulation of osteoblast differentiation and bone formation is mediated by modulation of the Wnt signaling pathway[J]. J Biol Chem, 2011,286(47):40575-40583.
pmid: 21987573
[45] De Crescenzo G, Pham PL, Durocher Y, et al. Trans-forming growth factor-beta (TGF-β) binding to the extracellular domain of the type Ⅱ TGF-β receptor: receptor capture on a biosensor surface using a new coiled-coil capture system demonstrates that avidity contributes significantly to high affinity binding[J]. J Mol Biol, 2003,328(5):1173-1183.
doi: 10.1016/s0022-2836(03)00360-7 pmid: 12729750
[46] Liu M, Sun F, Feng Y, et al. MicroRNA-132-3p re-presses Smad5 in MC3T3-E1 osteoblastic cells under cyclic tensile stress[J]. Mol Cell Biochem, 2019,458(1/2):143-157.
[47] Li W, Li H, Lu R, et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing[J]. Proc Natl Acad Sci U S A, 2004,101(5):1350-1355.
doi: 10.1073/pnas.0308308100 pmid: 14745017
[48] Elbediwy A, Vincent Mistiaen ZI, Thompson BJ. YAP and TAZ in epithelial stem cells: a sensor for cell polarity, mechanical forces and tissue damage[J]. Bioessays, 2016,38(7):644-653.
doi: 10.1002/bies.201600037 pmid: 27173018
[49] Yang Y, Wang BK, Chang ML, et al. Cyclic stretch enhances osteogenic differentiation of human perio-dontal ligament cells via YAP activation[J]. Biomed Res Int, 2018,2018:2174824.
doi: 10.1155/2018/2174824 pmid: 30519570
[50] Wang Y, Hu B, Hu R, et al. TAZ contributes to osteo-genic differentiation of periodontal ligament cells under tensile stress[J]. J Periodontal Res, 2020,55(1):152-160.
doi: 10.1111/jre.12698 pmid: 31539181
[51] Sun B, Wen Y, Wu X, et al. Expression pattern of YAP and TAZ during orthodontic tooth movement in rats[J]. J Mol Histol, 2018,49(2):123-131.
pmid: 29356923
[52] Steinert AF, Weissenberger M, Kunz M, et al. Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells[J]. Arthritis Res Ther, 2012,14(4):R168.
pmid: 22817660
[53] Taipale J, Cooper MK, Maiti T, et al. Patched acts catalytically to suppress the activity of Smoothened[J]. Nature, 2002,418(6900):892.
doi: 10.1038/nature00989 pmid: 12192414
[54] Yang X, Matsuda K, Bialek P, et al. ATF4 is a subs-trate of RSK2 and an essential regulator of osteoblast biology: implication for Coffin-Lowry syndrome[J]. Cell, 2004,117(3):387-398.
pmid: 15109498
[55] Yang S, Wei F, Hu L, et al. PERK-eIF2α-ATF4 path-way mediated by endoplasmic reticulum stress re-sponse is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force[J]. Cell Signal, 2016,28(8):880-886.
pmid: 27079961
[56] Lafoya B, Munroe JA, Mia MM, et al. Notch: a multi-functional integrating system of microenvironmental signals[J]. Dev Biol, 2016,418(2):227-241.
pmid: 27565024
[1] 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31.
[2] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[3] 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436.
[4] 胡巍,王译凡,袁一方,李影,郭斌. 节律基因调控成骨和破骨活动机制的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 302-307.
[5] 李婷婷,张玉峰,王若茜,黄智庆,谢律,薛艺凡,王宇蓝. 石墨烯及其衍生物改性复合材料促成骨机制和应用的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 673-677.
[6] 郝奕霖, 房付春, 吴补领. 微小RNA在人牙周膜来源细胞成骨分化中的作用[J]. 国际口腔医学杂志, 2018, 45(1): 46-49.
[7] 伍彩娟, 杨岚, 郭吕华. 降钙素基因相关肽在骨组织再生中的作用及机制[J]. 国际口腔医学杂志, 2017, 44(4): 488-492.
[8] 程群,杨明华,陈斌,刘娟,闫福华. Er:YAG激光对人牙周膜细胞增殖和迁移的影响[J]. 国际口腔医学杂志, 2015, 42(2): 135-139.
[9] 司家文1 郭礼和2 沈国芳1. 羊膜上皮细胞的生物学特性和骨向分化[J]. 国际口腔医学杂志, 2014, 41(5): 575-578.
[10] 唐宇欣1 金晗1 史册1 朱阳1 王丹丹1 王贺1 林崇韬2 孙宏晨1. 脂肪干细胞及其向成骨细胞分化的调控机制[J]. 国际口腔医学杂志, 2014, 41(4): 418-423.
[11] 冯琴 张凤秋 孙正. 牙龈卟啉单胞菌超声提取物对人牙周膜细胞活性的影响[J]. 国际口腔医学杂志, 2012, 39(2): 168-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王涛. 外科优先序列治疗——正颌外科的发展热点之一及其误区[J]. 国际口腔医学杂志, 2020, 47(5): 497 -505 .
[2] 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616 -620 .
[3] 薛晶. 邻面成形系统的发展和临床应用[J]. 国际口腔医学杂志, 2020, 47(6): 621 -626 .
[4] 尹圆圆,马华钰,李昕怡,徐静晨,柳汀,陈嵩,何姝姝. 小鼠正畸牙移动中牙周组织自噬相关基因表达的初步研究[J]. 国际口腔医学杂志, 2020, 47(6): 627 -634 .
[5] 陈青青,刘珍巧,王豫蓉. 穴位中频脉冲电刺激对下颌前伸大鼠咬肌改建的生理与生化研究[J]. 国际口腔医学杂志, 2020, 47(6): 635 -643 .
[6] 汪是琦,常雅琴,陈斌,谭葆春,泥艳红. 植骨术与植骨联用屏障膜在牙周再生治疗中临床疗效对比的系统评价与Meta分析[J]. 国际口腔医学杂志, 2020, 47(6): 644 -651 .
[7] 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661 -668 .
[8] 何宇晴,但红霞,陈谦明. 光动力疗法在口腔黏膜癌变防治中的应用[J]. 国际口腔医学杂志, 2020, 47(6): 669 -676 .
[9] 张心驰,吴炜. 颌面骨再生领域3D打印技术及应用材料的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 677 -685 .
[10] 吴洁林,高莺. 硬腭获取游离软组织移植物的应用进展[J]. 国际口腔医学杂志, 2020, 47(6): 686 -692 .