国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (4): 439-444.doi: 10.7518/gjkq.2020037

• 综述 • 上一篇    下一篇

微弧氧化技术制备钛基种植体表面涂层的研究进展

王欢1,刘洋1,戚孟春1(),李静怡1,刘梦楠1,孙红2   

  1. 1.华北理工大学口腔医学院 唐山 063210
    2.华北理工大学基础医学院 唐山 063210
  • 收稿日期:2019-11-29 修回日期:2020-04-12 出版日期:2020-07-01 发布日期:2020-07-10
  • 通讯作者: 戚孟春 E-mail:qimengchun@163.com
  • 作者简介:王欢,硕士,Email:1106565973@qq.com
  • 基金资助:
    河北省高等学校科学技术研究重点项目(ZD2015005)

Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation

Huan Wang1,Yang Liu1,Mengchun Qi1(),Jingyi Li1,Mengnan Liu1,Hong Sun2   

  1. 1. College of Stomatology, North China University of Science and Technology, Tangshan 063210, China
    2. College of Basic Medicine, North China University of Science and Technology, Tangshan 063210, China
  • Received:2019-11-29 Revised:2020-04-12 Online:2020-07-01 Published:2020-07-10
  • Contact: Mengchun Qi E-mail:qimengchun@163.com
  • Supported by:
    This study was supported by Key Scientific and Technological Research Projects of Colleges and Universities in Hebei Province(ZD2015005)

摘要:

钛及其合金因优越的机械性能以及生物相容性,被广泛作为牙科种植体、整形外科骨组织修复替代材料等。但因其表面生物惰性,需要进行表面改性以提高成骨性和抗菌性。在众多表面改性技术中,微弧氧化技术因能方便、有效地对种植体表面进行元素掺杂和形貌改性,能极大地提高钛基种植体的生物学性能,逐渐成为热门的种植体表面改性技术。众多学者研究发现,可以通过调整微弧氧化反应的参数以及联合其他表面改性技术,在钛基种植体表面制备具有不同形貌和化学成分的TiO2涂层,提高种植体的成骨性和抗菌性,提高种植成功率。本文针对使用微弧氧化技术制备钛基种植体表面涂层及其成骨性和抗菌性的研究进展进行综述。

关键词: 微弧氧化, 种植体, TiO2涂层, 表面改性, 成骨性, 抗菌性

Abstract:

Titanium and its alloys are widely used as alternative materials for dental implants and bone tissue repair in orthopaedic surgery due to their superior mechanical properties and biocompatibility. However, the surface of these materials is biologically inert and needs to be modified to improve their osteogenic and antibacterial properties. Micro-arc oxidation (MAO) has become a popular surface modification technology because it can conveniently and effectively modify the surface of implants by element doping and morphology. This method can greatly improve the biological properties of titanium-based implants. TiO2 coatings with different morphologies and chemical compositions can be prepared on the surface of titanium-based implants by adjusting the reaction parameters of MAO and combining with other surface modification techniques. This strategy can improve the osteogenic and antibacterial properties of implants and increase the planting success rate. In this paper, the surface coatings of titanium implants prepared by MAO and their osteogenic and antibacterial properties will be reviewed.

Key words: micro-arc oxidation, implant, TiO2 coating, surface modification, osteogenic property, antibacterial property

中图分类号: 

  • R783.1
[1] Zhao QM, Yi L, Jiang LB, et al. Surface functiona-lization of titanium with zinc/strontium-doped ti-tanium dioxide microporous coating via microarc oxidation[J]. Nanomed-Nanotechnol Biol Med, 2019,16:149-161.
[2] Sandeep Kranthi Kiran A, Sireesha M, Ramalingam R, et al. Modulation of biological properties by grain refinement and surface modification on titanium sur- faces for implant-related infections[J]. J Mater Sci, 2019,54(20):13265-13282.
[3] Nyan M, Hao J, Miyahara T, et al. Accelerated and enhanced bone formation on novel simvastatin-loaded porous titanium oxide surfaces[J]. Clin Implant Dent Relat Res, 2014,16(5):675-683.
doi: 10.1111/cid.12045 pmid: 23399109
[4] Zhou R, Wei DQ, Yang HY, et al. MC3T3-E1 cell response of amorphous phase/TiO2 nanocrystal com-posite coating prepared by microarc oxidation on titanium[J]. Mater Sci Eng C Mater Biol Appl, 2014,39:186-195.
doi: 10.1016/j.msec.2014.03.006 pmid: 24863215
[5] Song WH, Jun YK, Han Y, et al. Biomimetic apatite coatings on micro-arc oxidized titania[J]. Biomaterials, 2004,25(17):3341-3349.
doi: 10.1016/j.biomaterials.2003.09.103 pmid: 15020106
[6] Xu L, Wu C, Lei XC, et al. Effect of oxidation time on cytocompatibility of ultrafine-grained pure Ti in micro-arc oxidation treatment[J]. Surf Coat Technol, 2018,342:12-22.
[7] Guo HF, An MZ, Huo HB, et al. Microstructure cha-racteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions[J]. Appl Surf Sci, 2006,252(22):7911-7916.
[8] Babaei M, Dehghanian C, Taheri P, et al. Effect of duty cycle and electrolyte additive on photocatalytic performance of TiO2-ZrO2 composite layers prepared on CP Ti by micro arc oxidation method[J]. Surf Coat Technol, 2016,307:554-564.
[9] Yang W, Xu DP, Guo QQ, et al. Influence of electro-lyte composition on microstructure and properties of coatings formed on pure Ti substrate by micro arc oxidation[J]. Surf Coat Technol, 2018,349:522-528.
[10] Li GL, Cao HL, Zhang WJ, et al. Enhanced osseoin-tegration of hierarchical micro/nanotopographic ti-tanium fabricated by microarc oxidation and electro-chemical treatment[J]. ACS Appl Mater Interfaces, 2016,8(6):3840-3852.
doi: 10.1021/acsami.5b10633 pmid: 26789077
[11] Rupp F, Scheideler L, Olshanska N, et al. Enhancing surface free energy and hydrophilicity through che-mical modification of microstructured titanium im-plant surfaces[J]. J Biomed Mater Res A, 2006,76(2):323-334.
doi: 10.1002/jbm.a.30518 pmid: 16270344
[12] Qiao SC, Cao HL, Zhao X, et al. Ag-plasma modi-fication enhances bone apposition around titanium dental implants: an animal study in Labrador dogs[J]. Int J Nanomedicine, 2015,10:653-664.
doi: 10.2147/IJN.S73467 pmid: 25609967
[13] Xu L, Zhang K, Wu C, et al. Micro-arc oxidation enhances the blood compatibility of ultrafine-grained pure titanium[J]. Materials (Basel), 2017,10(12):E1446.
[14] Zhou WC, Huang O, Gan YZ, et al. Effect of ti-tanium implants with coatings of different pore sizes on adhesion and osteogenic differentiation of BMSCs[J]. Artif Cells Nanomed Biotechnol, 2019,47(1):290-299.
doi: 10.1080/21691401.2018.1553784 pmid: 30688103
[15] Zhang WJ, Wang GC, Liu Y, et al. The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration[J]. Biomaterials, 2013,34(13):3184-3195.
doi: 10.1016/j.biomaterials.2013.01.008 pmid: 23380352
[16] Zhang RR, Elkhooly TA, Huang QL, et al. Effects of the hierarchical macro/mesoporous structure on the osteoblast-like cell response[J]. J Biomed Mater Res A, 2018,106(7):1896-1902.
[17] Zhou HZ, Li YD, Liu L, et al. Early osseointegration of implants with cortex-like TiO2 coatings formed by micro-arc oxidation: a histomorphometric study in rabbits[J]. J Huazhong Univ Sci Technolog Med Sci, 2017,37(1):122-130.
doi: 10.1007/s11596-017-1705-0 pmid: 28224420
[18] Li YD, Wang WQ, Liu HY, et al. Formation and in vitro/in vivo performance of “cortex-like” micro/nano-structured TiO2 coatings on titanium by micro-arc oxidation[J]. Mater Sci Eng C Mater Biol Appl, 2018,87:90-103.
doi: 10.1016/j.msec.2018.02.023 pmid: 29549953
[19] Surmenev RA, Surmeneva MA, Ivanova AA. Signi-ficance of calcium phosphate coatings for the en-hancement of new bone osteogenesis: a review[J]. Acta Biomater, 2014,10(2):557-579.
doi: 10.1016/j.actbio.2013.10.036 pmid: 24211734
[20] Pilmane M, Salma-Ancane K, Loca D, et al. Strontium and strontium ranelate: historical review of some of their functions[J]. Mater Sci Eng C Mater Biol Appl, 2017,78:1222-1230.
doi: 10.1016/j.msec.2017.05.042 pmid: 28575961
[21] Sangeetha K, Ashok M, Girija EK, et al. Strontium and ciprofloxacin modified hydroxyapatites as functional grafts for bone prostheses[J]. Ceram Int, 2018,44(12):13782-13789.
[22] Yan J, Sun JF, Chu PK, et al. Bone integration capa-bility of a series of strontium-containing hydroxya-patite coatings formed by micro-arc oxidation[J]. J Biomed Mater Res A, 2013,101(9):2465-2480.
doi: 10.1002/jbm.a.34548 pmid: 23348908
[23] Sato M, Chen P, Tsutsumi Y, et al. Effect of stron-tium ions on calcification of preosteoblasts cultured on porous calcium- and phosphate-containing titanium oxide layers formed by micro-arc oxidation[J]. Dent Mater J, 2016,35(4):627-634.
doi: 10.4012/dmj.2016-032 pmid: 27477229
[24] Qin S, Xu KH, Nie BN, et al. Approaches based on passive and active antibacterial coating on titanium to achieve antibacterial activity[J]. J Biomed Mater Res A, 2018,106(9):2531-2539.
doi: 10.1002/jbm.a.36413 pmid: 29603857
[25] Song WH, Ryu HS, Hong SH. Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation[J]. J Biomed Mater Res A, 2009,88(1):246-254.
doi: 10.1002/jbm.a.31877 pmid: 18286618
[26] Goudouri OM, Kontonasaki E, Lohbauer U, et al. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy[J]. Acta Biomater, 2014,10(8):3795-3810.
doi: 10.1016/j.actbio.2014.03.028 pmid: 24704700
[27] Chai HW, Guo L, Wang XT, et al. Antibacterial effect of 317L stainless steel contained copper in prevention of implant-related infection in vitro and in vivo[J]. J Mater Sci Mater Med, 2011,22(11):2525-2535.
doi: 10.1007/s10856-011-4427-z pmid: 21870079
[28] Simchi A, Tamjid E, Pishbin F, et al. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications[J]. Nanomed-Nanotechnol Biol Med, 2011,7(1):22-39.
doi: 10.1016/j.nano.2010.10.005
[29] Wu HB, Zhang XY, Geng ZH, et al. Preparation, anti-bacterial effects and corrosion resistant of porous Cu-TiO2 coatings[J]. Appl Surf Sci, 308:43-49.
[30] Huang QL, Li XZ, Elkhooly TA, et al. The Cu-containing TiO2 coatings with modulatory effects on macrophage polarization and bactericidal capacity prepared by micro-arc oxidation on titanium sub-strates[J]. Colloids Surf B Biointerfaces, 2018,170:242-250.
doi: 10.1016/j.colsurfb.2018.06.020 pmid: 29933233
[31] Zhang EL, Li FB, Wang HY, et al. A new antibac-terial titanium-copper sintered alloy: preparation and antibacterial property[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(7):4280-4287.
doi: 10.1016/j.msec.2013.06.016 pmid: 23910344
[32] Yao XH, Zhang XY, Wu HB, et al. Microstructure and antibacterial properties of Cu-doped TiO2 coating on titanium by micro-arc oxidation[J]. Appl Surf Sci, 2014,292:944-947.
doi: 10.1016/j.apsusc.2013.12.083
[33] Nriagu J. Zinc deficiency in human health//Nriagu J ed. Encyclopedia of environmental health[M]. Amsterdam: Elsevier, 2011: 789-800.
[34] Yu JM, Xu LZ, Li K, et al. Zinc-modified calcium silicate coatings promote osteogenic differentiation through TGF-β/Smad pathway and osseointegration in osteopenic rabbits[J]. Sci Rep, 2017,7(1):3440.
doi: 10.1038/s41598-017-03661-5 pmid: 28611362
[35] Rokosz K, Hryniewicz T, Gaiaschi S, et al. Novel porous phosphorus-calcium-magnesium coatings on titanium with copper or zinc obtained by DC plasma electrolytic oxidation: fabrication and characteriza-tion[J]. Materials (Basel), 2018,11(9):E1680.
[36] Li M, Li D, Qu L, et al. Study on Ag bio-coatings on titanium alloy by ultrasonic auxiliary micro-arc oxi-dation [C]//Proceedings of 2011 6th International Forum on Strategic Technology, Harbin, 2011. IEEE, 2011. doi: 10.1109/ifost.2011.6021002.
[37] Lee JL, Kuo KN, Sung TL, et al. Preparation of antibacterial ceramic coatings containing Ag on titanium alloy by use of microarc oxidation[J]. IEEE Trans Plasma Sci, 2016,44(12):3179-3182.
[38] He XJ, Zhang XY, Bai L, et al. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings[J]. Biomed Mater, 2016,11(4):045008.
doi: 10.1088/1748-6041/11/4/045008 pmid: 27508428
[39] Liu GG, Zhao GX, Zhou W, et al. In situ bond modu-lation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production[J]. Adv Funct Mater, 2016,26(37):6822-6829.
[1] 张敏,万浩元. 种植体周围炎药物治疗与激光治疗的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 463-470.
[2] 吴秋月,李治邦. 药物辅助治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 471-477.
[3] 田青鹭,赵志河. 微型种植体在口腔正畸中稳定性的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 212-218.
[4] 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94.
[5] 黄萧瑜,李明云,周学东,程磊. 全身及局部因素对种植体周围稳态的影响[J]. 国际口腔医学杂志, 2019, 46(6): 730-734.
[6] 青薇,黄丽娟,郑佳俊,任静,李成龙,庹嫱,任小华,牟雁东. 16S核糖体DNA高通量测序研究种植体龈沟液微生物的变化[J]. 国际口腔医学杂志, 2019, 46(5): 532-539.
[7] 颜丹,张锡忠,王建国. 螺纹深度对支抗微种植体和颌骨影响的三维有限元分析[J]. 国际口腔医学杂志, 2019, 46(4): 387-392.
[8] 郑铮,陈文川. 生物学宽度概念在口腔种植中的结构、尺度及功能意义[J]. 国际口腔医学杂志, 2019, 46(4): 481-487.
[9] 于婉琦,周延民,赵静辉. 口腔种植体新材料的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 488-496.
[10] 黄婕,林云红. 种植体周围角化龈宽度与种植体周围骨高度的相关性[J]. 国际口腔医学杂志, 2019, 46(2): 149-155.
[11] 曹焜,李家锋,孙玉华,鲍强,卢秋宁,唐巍. 下颌下窝的锥形束CT影像分析[J]. 国际口腔医学杂志, 2019, 46(2): 209-212.
[12] 刘育豪,袁泉,张士文. 基于共价接枝的钛种植体载药抗菌涂层的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 228-233.
[13] 陈曦,于海洋. 聚醚醚酮在口腔种植与修复领域的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 657-665.
[14] 刘梦齐,盖阔,蒋丽. 抗菌性口腔种植材料的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 516-521.
[15] 祁星颖,郑国莹,隋磊. 钛种植体表面形貌对成骨的影响[J]. 国际口腔医学杂志, 2018, 45(5): 527-533.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[10] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .