国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (2): 146-151.doi: 10.7518/gjkq.2020020

• 牙周专栏 • 上一篇    下一篇

不同干细胞来源外泌体在牙周再生领域的研究进展

吴晓楠1,马宁2,侯建霞3()   

  1. 1. 青岛市口腔医院牙周科 青岛 266001
    2. 青岛市市立医院东院区口腔科 青岛 266071
    3. 北京大学口腔医院牙周科 北京 100081
  • 收稿日期:2019-06-04 修回日期:2019-11-29 出版日期:2020-03-01 发布日期:2020-03-12
  • 通讯作者: 侯建霞 E-mail:jxhou@163.com
  • 作者简介:吴晓楠,医师,硕士,Email: wxn6128@163.com
  • 基金资助:
    青岛市卫生科技发展计划项目(2017-WJZD123)

Research progress of exosomes derived from different stem cells in periodontal regeneration

Wu Xiaonan1,Ma Ning2,Hou Jianxia3()   

  1. 1. Dept. of Periodontology, Qingdao Stomatological Hospital, Qingdao 266001, China
    2. Dept. of Stomatology, Qingdao Municipal Hospital, Qingdao 266071, China
    3. Dept. of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
  • Received:2019-06-04 Revised:2019-11-29 Online:2020-03-01 Published:2020-03-12
  • Contact: Jianxia Hou E-mail:jxhou@163.com
  • Supported by:
    This study was supported by Qingdao Health Science and Technology Development(2017-WJZD123)

摘要:

牙周炎是由牙菌斑中的微生物所引起的慢性感染性疾病,可引起牙周支持组织的炎症和破坏,是成年人失牙的最主要原因。良好的菌斑控制可有效抑制炎症进展,然而目前在临床诊疗中,尚难以获得稳定的、令人满意的牙周组织再生。外泌体是真核细胞分泌的一种细胞外膜性微囊泡,可作为干细胞旁分泌活动的一种重要形式参与多种组织的再生。外泌体的应用为牙周组织再生提供了一种新策略,本文对不同干细胞来源外泌体在牙周再生领域的研究进展进行综述。

关键词: 外泌体, 牙周再生, 间充质干细胞

Abstract:

Periodontitis is a chronic infectious disease caused by dental plaque and the primary reason for tooth loss in adults because it damages periodontal supporting structures. Microbial plaque biofilm control is an effective method to prevent further disease progression. However, a reliable treatment that can lead to stable and satisfactory periodontal regeneration in clinical practice has not been reported to date. Exosome is a specific class of lipid-membrane-bound extracellular vesicle. Exosomes are secreted from cells through paracrine mechanism and participate in tissue regeneration. Considering that the application of exosomes provides a new strategy for tissue regeneration, this review presents the current status of exosomes derived from different kinds of cells for potential therapeutic use in periodontal regeneration.

Key words: exosome, periodontal regeneration, mesenchymal stem cell

中图分类号: 

  • Q756
[1] Han J, Menicanin D, Gronthos S , et al. Stem cells, tissue engineering and periodontal regeneration[J]. Aust Dent J, 2014,59(Suppl 1):117-130.
[2] Vizoso FJ, Eiro N, Cid S , et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[J]. Int J Mol Sci, 2017,18(9). doi: 10.3390/ijms18091852.
[3] Veneruso V, Rossi F, Villella A , et al. Stem cell para-crine effect and delivery strategies for spinal cord injury regeneration[J]. J Control Release, 2019,300:141-153.
[4] Park SR, Kim JW, Jun HS , et al. Stem cell secretome and its effect on cellular mechanisms relevant to wound healing[J]. Mol Ther, 2018,26(2):606-617.
[5] Johnstone RM, Adam M, Hammond JR , et al. Vesicle formation during reticulocyte maturation. Associa-tion of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987,262(19):9412-9420.
[6] Jing H, He X, Zheng J . Exosomes and regenerative medicine: state of the art and perspectives[J]. Transl Res, 2018,196:1-16.
[7] Skotland T, Sandvig K, Llorente A . Lipids in exoso-mes: current knowledge and the way forward[J]. Prog Lipid Res, 2017,66:30-41.
[8] Rana S, Yue S, Stadel D , et al. Toward tailored exo-somes: the exosomal tetraspanin web contributes to target cell selection[J]. Int J Biochem Cell Biol, 2012,44(9):1574-1584.
[9] Vabulas RM, Raychaudhuri S, Hayer-Hartl M , et al. Protein folding in the cytoplasm and the heat shock response[J]. Cold Spring Harb Perspect Biol, 2010,2(12):a004390.
[10] Conde-Vancells J, Rodriguez-Suarez E, Embade N , et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes[J]. J Proteome Res, 2008,7(12):5157-5166.
[11] Cobelli NJ, Leong DJ, Sun HB . Exosomes: biology, therapeutic potential, and emerging role in muscu-loskeletal repair and regeneration[J]. Ann N Y Acad Sci, 2017,1410(1):57-67.
[12] Kadota T, Yoshioka Y, Fujita Y , et al. Extracellular vesicles in lung cancer—from bench to bedside[J]. Semin Cell Dev Biol, 2017,67:39-47.
[13] Koppers-Lalic D, Hogenboom MM, Middeldorp JM , et al. Virus-modified exosomes for targeted RNA delivery; a new approach in nanomedicine[J]. Adv Drug Deliv Rev, 2013,65(3):348-356.
[14] Li X, Corbett AL, Taatizadeh E , et al. Challenges and opportunities in exosome research—perspec-tives from biology, engineering, and cancer therapy[J]. APL Bioeng, 2019,3(1):011503.
[15] Villarroya-Beltri C, Baixauli F, Mittelbrunn M , et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins[J]. Nat Commun, 2016,7:13588.
[16] Song L, Tang S, Han X , et al. KIBRA controls exo-some secretion via inhibiting the proteasomal de-gradation of Rab27a[J]. Nat Commun, 2019,10(1):1639.
[17] Hyenne V, Apaydin A, Rodriguez D , et al. RAL-1 controls multivesicular body biogenesis and exosome secretion[J]. J Cell Biol, 2015,211(1):27-37.
[18] Chen C, Wang D, Moshaverinia A , et al. Mesen-chymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis[J]. Cell Res, 2017,27(4):559-577.
[19] Lu Z, Chen Y, Dunstan C , et al. Priming adipose stem cells with tumor necrosis factor-alpha preconditio-ning potentiates their exosome efficacy for bone regeneration[J]. Tissue Eng Part A, 2017,23(21/22):1212-1220.
[20] Narayanan K, Kumar S, Padmanabhan P , et al. Lineage-specific exosomes could override extra-cellular matrix mediated human mesenchymal stem cell differentiation[J]. Biomaterials, 2018,182:312-322.
[21] Cui Y, Luan J, Li H , et al. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expre-ssion[J]. FEBS Lett, 2016,590(1):185-192.
[22] Narayanan R, Huang CC, Ravindran S . Hijacking the cellular mail: exosome mediated differentiation of mesenchymal stem cells[J]. Stem Cells Int, 2016,2016:3808674.
[23] Li XL, Liu YB, Ma EG , et al. Synergistic effect of BMP9 and TGF-β in the proliferation and differen-tiation of osteoblasts[J]. Genet Mol Res, 2015,14(3):7605-7615.
[24] Lamplot JD, Qin J, Nan G , et al. BMP9 signaling in stem cell differentiation and osteogenesis[J]. Am J Stem Cells, 2013,2(1):1-21.
[25] Zhang J, Liu X, Li H , et al. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway[J]. Stem Cell Res Ther, 2016,7(1):136.
[26] Qi X, Zhang J, Yuan H , et al. Exosomes secreted by human-induced pluripotent stem cell-derived me-senchymal stem cells repair critical-sized bone de-fects through enhanced angiogenesis and osteogenesis in osteoporotic rats[J]. Int J Biol Sci, 2016,12(7):836-849.
[27] Li W, Liu Y, Zhang P , et al. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration[J]. ACS Appl Mater Interfaces, 2018,10(6):5240-5254.
[28] Seo BM, Miura M, Gronthos S , et al. Investigation of multipotent postnatal stem cells from human pe-riodontal ligament[J]. Lancet, 2004,364(9429):149-155.
[29] 朱斌, 李楠, 田自锋 , 等. 骨髓间充质干细胞来源的外泌体促进牙周再生的体外研究[J]. 中国实用口腔科杂志, 2016,9(12):709-713.
Zhu B, Li N, Tian ZF , et al. Study of periodontal regeneration promoted by exosome from BMMSC in vitro[J]. Chin J Pract Stomatol, 2016,9(12):709-713.
[30] 费栋栋 . 外泌体介导牙周膜干细胞成骨异质性克隆亚群间信息交流的作用及机制研究[D]. 西安: 空军军医大学, 2017.
Fei DD . Exosome mediate communications between PDLSCs-derived single-cell clones with osteogenic heterogeneity: its role and mechanism[D]. Xi’an: Air Force Medical University, 2017.
[31] Mohammed E, Khalil E, Sabry D . Effect of adipose-derived stem cells and their Exo as adjunctive the-rapy to nonsurgical periodontal treatment: a his-tologic and histomorphometric study in rats[J]. Bio-molecules, 2018,8:167.
[32] Chew JRJ, Chuah SJ, Teo KYW , et al. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration[J]. Acta Biomater, 2019,89:252-264.
[33] Yu B, Zhang X, Li X . Exosomes derived from mesenchymal stem cells[J]. Int J Mol Sci, 2014,15(3):4142-4157.
[34] Vizoso FJ, Eiro N, Cid S , et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[J]. Int J Mol Sci, 2017,18(9). doi: 10.3390/ijms18091852.
[35] Vishnubhatla I, Corteling R, Stevanato L , et al. The development of stem cell-derived exosomes as a cell-free regenerative medicine[J]. J Circ Biomark, 2014,3:2.
[36] Sharma A . Role of stem cell derived exosomes in tumor biology[J]. Int J Cancer, 2018,142(6):1086-1092.
[37] Qi J, Zhou Y, Jiao Z , et al. Exosomes derived from human bone marrow mesenchymal stem cells pro-mote tumor growth through hedgehog signaling pa-thway[J]. Cell Physiol Biochem, 2017,42(6):2242-2254.
[38] Zhang HG, Grizzle WE . Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions[J]. Am J Pathol, 2014,184(1):28-41.
[39] Harris DA, Patel SH, Gucek M , et al. Exosomes released from breast cancer carcinomas stimulate cell movement[J]. PLoS One, 2015,10(3):e0117495.
[1] 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262.
[2] 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269.
[3] 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277.
[4] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[5] 冯顶丽,卓丽丹,芦笛,郭红延. 微小RNA调节间充质干细胞软骨分化机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 640-645.
[6] 葛逸弘, 房付春, 吴补领. 长链非编码RNA在间充质干细胞多向分化过程中的调节作用[J]. 国际口腔医学杂志, 2018, 45(3): 267-271.
[7] 刘珍珍, 方蛟, 赵静辉, 邹净亭, 相星辰, 王佳, 周延民. 牙龈干细胞生物学潜能的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 55-58.
[8] 薛令法, 张岱尊, 肖文林, 于保军. 机械牵张力促进小鼠骨髓间充质干细胞的成骨向分化[J]. 国际口腔医学杂志, 2017, 44(6): 679-685.
[9] 张建康, 卫俊俊, 唐曌隆, 余云波, 敬伟. Wnt和Notch通路在老龄个体骨髓间充质干细胞成骨中的调控[J]. 国际口腔医学杂志, 2017, 44(4): 459-465.
[10] 吴佳梦, 王效英. 外泌体与口腔疾病关系的研究进展[J]. 国际口腔医学杂志, 2017, 44(3): 336-339.
[11] 杨红 董强. 组织工程细胞片在牙周组织再生中的作用[J]. 国际口腔医学杂志, 2014, 41(3): 324-328.
[12] 王涛1 廖天安1 王鸿1 邓伟1 于大海2. 血管内皮生长因子基因修饰骨髓间充质干细胞移植于放射治疗后组织的实验研究[J]. 国际口腔医学杂志, 2014, 41(2): 133-136.
[13] 张弘1综述 张志光2审校. 血管周细胞的研究进展[J]. 国际口腔医学杂志, 2013, 40(4): 529-532.
[14] 徐远明 樊明文 杨雪超. 间充质干细胞在肿瘤靶向治疗中的应用[J]. 国际口腔医学杂志, 2013, 40(3): 371-374.
[15] 吴玉琼综述 江凌勇 房兵审校. 胞外信号调控激酶1/2 在机械力促进核心结合因子α1 表达的相关研究[J]. 国际口腔医学杂志, 2012, 39(1): 86-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 康健,华成舸. 术前诱导化疗在头颈部肿瘤预后评价中的意义[J]. 国际口腔医学杂志, 2008, 35(S1): .