国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (3): 304-310.doi: 10.7518/gjkq.2020019

• 综述 • 上一篇    下一篇

中性粒细胞细胞外陷阱网与牙周炎的相关性研究进展

王晓宇,朱昭蓉,吴亚菲,赵蕾()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心四川大学华西口腔医院牙周病科 成都 610041
  • 收稿日期:2019-06-11 修回日期:2019-10-31 出版日期:2020-05-01 发布日期:2020-05-08
  • 通讯作者: 赵蕾
  • 作者简介:王晓宇,硕士,Email:492742363@qq.com
  • 基金资助:
    国家自然科学基金面上项目(81970944);四川省重点研发项目(2018SZ0161)

Advances in research on the relationship of neutrophil extracellular traps to periodontitis

Wang Xiaoyu,Zhu Zhaorong,Wu Yafei,Zhao Lei()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2019-06-11 Revised:2019-10-31 Online:2020-05-01 Published:2020-05-08
  • Contact: Lei Zhao
  • Supported by:
    The General Program of National Natural Science Foundation of China(81970944);Reasher and Development Project of Sichuan Province(2018SZ0161)

摘要:

中性粒细胞是机体防御系统的成员之一,在免疫反应中发挥着重要作用。中性粒细胞细胞外陷阱网(NET)是新近发现的中性粒细胞发挥作用的一种形式,除了能够诱获并杀灭病原体而发挥作用之外,还可能对机体产生直接或者间接的损伤。NET不仅出现在牙周组织中,还与牙周致病菌息息相关。本文对NET与牙周炎的相关性研究进行综述。

关键词: 中性粒细胞细胞外陷阱网, 中性粒细胞, 牙周炎, 牙周致病菌

Abstract:

Neutrophil is a member of the body’s defence system and plays an important role in immune responses. Neutrophil extracellular trap (NET) is a newly discovered form of functioning neutrophil that can trap and kill pathogens and may cause direct or indirect damage to the body. NETs not only appear in periodontal tissues but are also closely related to periodontal pathogens. This article will review related research on NETs and periodontitis.

Key words: neutrophil extracellular trap, neutrophil, periodontitis, periodontal pathogen

中图分类号: 

  • R781.4 +2
[1] Brinkmann V, Reichard U, Goosmann C , et al. Neu-trophil extracellular traps kill bacteria[J]. Science, 2004,303(5663):1532-1535.
doi: 10.1126/science.1092385 pmid: 15001782
[2] Yipp BG, Kubes P . NETosis: how vital is it[J]. Blood, 2013,122(16):2784-2794.
doi: 10.1182/blood-2013-04-457671 pmid: 24009232
[3] Fuchs TA, Abed U, Goosmann C , et al. Novel cell death program leads to neutrophil extracellular traps[J]. J Cell Biol, 2007,176(2):231-241.
doi: 10.1083/jcb.200606027 pmid: 17210947
[4] Palmer LJ, Cooper PR, Ling MR , et al. Hypochlo-rous acid regulates neutrophil extracellular trap re-lease in humans[J]. Clin Exp Immunol, 2012,167(2):261-268.
doi: 10.1111/j.1365-2249.2011.04518.x pmid: 22236002
[5] Ostafin M, Pruchniak MP, Ciepiela O , et al. Different procedures of diphenyleneiodonium chloride addition affect neutrophil extracellular trap formation[J]. Anal Biochem, 2016,509:60-66.
doi: 10.1016/j.ab.2016.05.003 pmid: 27179553
[6] Hakkim A, Fuchs TA, Martinez NE , et al. Activation of the Raf-MEK-ERK pathway is required for ne-utrophil extracellular trap formation[J]. Nat Chem Biol, 2011,7(2):75-77.
doi: 10.1038/nchembio.496 pmid: 21170021
[7] Li P, Li M, Lindberg MR , et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps[J]. J Exp Med, 2010,207(9):1853-1862.
doi: 10.1084/jem.20100239 pmid: 20733033
[8] Pilsczek FH, Salina D, Poon KK , et al. A novel me-chanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus[J]. J Immunol, 2010,185(12):7413-7425.
doi: 10.4049/jimmunol.1000675 pmid: 21098229
[9] Kumar S, Gupta E, Kaushik S , et al. Neutrophil ex-tracellular traps: formation and involvement in disease progression[J]. Iran J Allergy Asthma Immunol, 2018,17(3):208-220.
pmid: 29908538
[10] Yousefi S, Mihalache C, Kozlowski E , et al. Viable neutrophils release mitochondrial DNA to form ne-utrophil extracellular traps[J]. Cell Death Differ, 2009,16(11):1438-1444.
doi: 10.1038/cdd.2009.96 pmid: 19609275
[11] Zhang S, Lu X, Shu X , et al. Elevated plasma cfDNA may be associated with active lupus nephritis and partially attributed to abnormal regulation of neutro-phil extracellular traps (NETs) in patients with sys-temic lupus erythematosus[J]. Intern Med, 2014,53(24):2763-2771.
doi: 10.2169/internalmedicine.53.2570 pmid: 25500436
[12] Zhao W, Fogg DK, Kaplan MJ . A novel image-based quantitative method for the characterization of NETosis[J]. J Immunol Methods, 2015,423:104-110.
doi: 10.1016/j.jim.2015.04.027 pmid: 26003624
[13] Masuda S, Shimizu S, Matsuo J , et al. Measurement of NET formation in vitro and in vivo by flow cyto-metry[J]. Cytometry A, 2017,91(8):822-829.
doi: 10.1002/cyto.a.23169 pmid: 28715618
[14] Masuda S, Nakazawa D, Shida H , et al. NETosis markers: quest for specific, objective, and quanti-tative markers[J]. Clin Chim Acta, 2016,459:89-93.
doi: 10.1016/j.cca.2016.05.029 pmid: 27259468
[15] White PC, Chicca IJ, Cooper PR , et al. Neutrophil extracellular traps in periodontitis: a Web of intrigue[J]. J Dent Res, 2016,95(1):26-34.
doi: 10.1177/0022034515609097 pmid: 26442948
[16] Vitkov L, Klappacher M, Hannig M , et al. Extracel-lular neutrophil traps in periodontitis[J]. J Periodontal Res, 2009,44(5):664-672.
doi: 10.1111/j.1600-0765.2008.01175.x pmid: 19453857
[17] Vitkov L, Klappacher M, Hannig M , et al. Neutrophil fate in gingival crevicular fluid[J]. Ultrastruct Pathol, 2010,34(1):25-30.
doi: 10.3109/01913120903419989 pmid: 20070150
[18] Magán-Fernández A, O’Valle F, Abadía-Molina F , et al. Characterization and comparison of neutrophil extracellular traps in gingival samples of periodontitis and gingivitis: a pilot study[J]. J Periodontal Res, 2019,54(3):218-224.
doi: 10.1111/jre.12621 pmid: 30298590
[19] Kaneko C, Kobayashi T, Ito S , et al. Circulating levels of carbamylated protein and neutrophil extra-cellular traps are associated with periodontitis seve-rity in patients with rheumatoid arthritis: a pilot case-control study[J]. PLoS One, 2018,13(2):e0192365.
doi: 10.1371/journal.pone.0192365 pmid: 29394286
[20] Hirschfeld J, Dommisch H, Skora P , et al. Neutrophil extracellular trap formation in supragingival biofilms[J]. Int J Med Microbiol, 2015,305(4/5):453-463.
doi: 10.1016/j.ijmm.2015.04.002 pmid: 25959370
[21] White P, Sakellari D, Roberts H , et al. Peripheral blood neutrophil extracellular trap production and degradation in chronic periodontitis[J]. J Clin Perio-dontol, 2016,43(12):1041-1049.
doi: 10.1111/jcpe.12628 pmid: 27678376
[22] White P, Cooper P, Milward M , et al. Differential activation of neutrophil extracellular traps by spe-cific periodontal bacteria[J]. Free Radic Biol Med, 2014,75(Suppl 1):S53.
doi: 10.1016/j.freeradbiomed.2014.10.827 pmid: 26461408
[23] Jayaprakash K, Demirel I, Khalaf H , et al. The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutro-phils and the periodontal pathogen Porphyromonas gingivalis[J]. Mol Oral Microbiol, 2015,30(5):361-375.
doi: 10.1111/omi.12099 pmid: 25869817
[24] Hirschfeld J, White PC, Milward MR , et al. Modula-tion of neutrophil extracellular trap and reactive oxy-gen species release by periodontal bacteria[J]. Infect Immun, 2017,85(12). doi: 10.1128/IAI.00297-17.
doi: 10.1128/IAI.00297-17 pmid: 28947649
[25] Oveisi M, Shifman H, Fine N , et al. Novel assay to characterize neutrophil responses to oral biofilms[J]. Infect Immun, 2019,87(2). doi: 10.1128/IAI.00790- 18.
doi: 10.1128/IAI.00790-18 pmid: 30455195
[26] Levy DH, Chapple ILC, Shapira L , et al. Nupharidine enhances Aggregatibacter actinomycetemcomitans clearance by priming neutrophils and augmenting their effector functions[J]. J Clin Periodontol, 2019,46(1):62-71.
doi: 10.1111/jcpe.13036 pmid: 30372545
[27] Armstrong CL, Klaes CK, Vashishta A , et al. Filifa-ctor alocis manipulates human neutrophils affecting their ability to release neutrophil extracellular traps induced by PMA[J]. Innate Immun, 2018,24(4):210-220.
doi: 10.1177/1753425918767507 pmid: 29649915
[28] Palmer LJ, Chapple IL, Wright HJ , et al. Extracelular deoxyribonuclease production by periodontal bac-teria[J]. J Periodontal Res, 2012,47(4):439-445.
doi: 10.1111/j.1600-0765.2011.01451.x pmid: 22150619
[29] Khan MA, Farahvash A, Douda DN , et al. JNK ac- tivation turns on LPS-and Gram-negative bacteria-induced NADPH oxidase-dependent suicidal NETosis[J]. Sci Rep-UK, 2017,7(1):3409.
doi: 10.1038/s41598-017-03257-z pmid: 28611461
[30] Stobernack T, du Teil Espina M, Mulder LM , et al. A secreted bacterial peptidylarginine deiminase can neutralize human innate immune defenses[J]. MBio, 2018,9(5). doi: 10.1128/mBio.01704-18.
doi: 10.1128/mBio.01704-18 pmid: 30377277
[31] Konig MF, Abusleme L, Reinholdt J , et al. Aggre-gatibacter actinomycetemcomitans-induced hyperci-trullination links periodontal infection to autoim-munity in rheumatoid arthritis[J]. Sci Transl Med, 2016,8(369):369ra176.
doi: 10.1126/scitranslmed.aaj1921 pmid: 27974664
[32] Hirschfeld J, Roberts HM, Chapple IL , et al. Effects of Aggregatibacter actinomycetemcomitans leuko-toxin on neutrophil migration and extracellular trap formation[J]. J Oral Microbiol, 2016,8:33070.
doi: 10.3402/jom.v8.33070 pmid: 27834173
[33] Palmer LJ, Damgaard C, Holmstrup P , et al. Influence of complement on neutrophil extracellular trap re-lease induced by bacteria[J]. J Periodontal Res, 2016,51(1):70-76.
doi: 10.1111/jre.12284 pmid: 25900429
[34] Dhanrajani PJ . Papillon-Lefevre syndrome: clinical presentation and a brief review[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009,108(1):e1-e7.
doi: 10.1016/j.tripleo.2009.03.016 pmid: 19540439
[35] Roberts H, White P, Dias I , et al. Characterization of neutrophil function in Papillon-Lefèvre syndrome[J]. J Leukoc Biol, 2016,100(2):433-444.
doi: 10.1189/jlb.5A1015-489R pmid: 26957212
[36] Sørensen OE, Clemmensen SN, Dahl SL , et al. Pa-pillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses[J]. J Clin Invest, 2014,124(10):4539-4548.
doi: 10.1172/JCI76009 pmid: 25244098
[37] Papayannopoulos V, Metzler KD, Hakkim A , et al. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps[J]. J Cell Biol, 2010,191(3):677-691.
doi: 10.1083/jcb.201006052 pmid: 20974816
[38] Hahn J, Schauer C, Czegley C , et al. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases[J]. FASEB J, 2019,33(1):1401-1414.
doi: 10.1096/fj.201800752R pmid: 30130433
[1] 傅豫, 何薇, 黄兰. 铁死亡在口腔疾病中的研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 36-44.
[2] 罗晓洁,王德续,陈晓涛. 基于生物信息学分析铁死亡调控基因与牙周炎的关系[J]. 国际口腔医学杂志, 2023, 50(6): 661-668.
[3] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[4] 龚美灵,程兴群,吴红崑. 牙周炎与帕金森病相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 587-593.
[5] 孙佳,韩烨,侯建霞. 白细胞介素-6-铁调素信号轴调控牙周炎相关性贫血致病机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 329-334.
[6] 刘体倩,梁星,刘蔚晴,李晓虹,朱睿. 咬合创伤在牙周炎发生发展中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 19-24.
[7] 李琼,于维先. 白藜芦醇治疗牙周炎及其生物利用度的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 25-31.
[8] 黄伟琨,徐秋艳,周婷. 黄芩苷抑制脂多糖促巨噬细胞氧化应激损伤作用的研究[J]. 国际口腔医学杂志, 2022, 49(5): 521-528.
[9] 周剑鹏,谢旭东,赵蕾,王骏. 辅助性T细胞17及白细胞介素17在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 586-592.
[10] 陈荟宇,白明茹,叶玲. 信号素3A与口腔常见病关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 593-599.
[11] 周佳佳,赵蕾,徐欣. 牙周炎相关基因多态性的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 432-440.
[12] 马玉,左玉,张鑫. 光动力疗法辅助治疗牙周炎治疗效果的Meta分析[J]. 国际口腔医学杂志, 2022, 49(3): 305-316.
[13] 钱素婷,丁玲敏,纪雅宁,林军. 微小RNA在牙周炎龈沟液中的表达差异及对牙周炎的调控机制[J]. 国际口腔医学杂志, 2022, 49(3): 349-355.
[14] 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248.
[15] 白慧敏,张雨薇,孟姝,刘程程. 特异性促炎症消退介质在牙周炎中作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 85-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .