国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (4): 481-487.doi: 10.7518/gjkq.2019066

• 综述 • 上一篇    下一篇

生物学宽度概念在口腔种植中的结构、尺度及功能意义

郑铮,陈文川   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院修复1科 成都 610041
  • 收稿日期:2018-12-04 修回日期:2019-03-25 出版日期:2019-07-10 发布日期:2019-07-12
  • 作者简介:郑铮,住院医师,硕士,Email: zhengzheng942462@163.com
  • 基金资助:
    四川大学专业学位研究生优秀案例课程建设项目(2016KCJS080)

Composition, dimension, and function of biological width in oral implantations

Zheng Zheng,Chen Wenchuan   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics 1, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-12-04 Revised:2019-03-25 Online:2019-07-10 Published:2019-07-12
  • Supported by:
    This study was supported by Program for the Case Model Curricula of Professional Degree Postgraduate of Sichuan University(2016KCJS080)

摘要:

1962年,Cohon根据Gargiulo等的研究提出了天然牙中存在生物学宽度,即龈沟底与牙槽嵴顶之间约2 mm的恒定距离,结构上包括结合上皮(宽约0.97 mm)以及结合上皮根方和牙槽嵴顶之间的纤维结缔组织(宽约1.07mm)。1991年,Berglundh等提出在种植体周围存在类似的结构,即被称为种植体生物学宽度,从种植体周围黏膜顶端到种植体-骨结合位点之间约3~4 mm的较为恒定的距离,结构上包括上皮层(包括龈沟上皮和结合上皮)以及上皮根方与种植体-骨结合位点之间的纤维结缔组织层。其功能意义主要包括作为屏障抵御外界刺激、有利于种植区软硬组织的重建和临床上指导种植修复过程3个方面。本文就口腔种植体周围生物学宽度在结构、尺度及功能上的意义进行综述。

关键词: 种植体, 生物学宽度, 结合上皮

Abstract:

In 1962, according to Gargiulo et al, Cohon proposed the biological width around the natural tooth, that is, a 2 mm-width constant distance between gingival sulcus and alveolar crest, including junctional epithelium (width 0.97 mm) and fibrous connective tissue between junctional epithelium and alveolar crest (width 1.07 mm). In 1991, Berglundh et al proposed a biological width similar to the width of a natural tooth around an implant and is named as biological width in implant. The proposed biological width is a 3 to 4 mm in distance from the top of the peri-implant mucosa to the first bone-to-implant contact, including epithelial tissues, namely, sulcular and junctional epithelia, and fibrous connective tissues between the epithelium and the first bone-to-implant contact in composition. This width is mainly proposed to resist external stimulation, thereby reestablishing soft and hard tissues around the implant and guiding clinical operations in oral implantation. This review explores the composition, dimension, and function of the biological width around implants.

Key words: implant, biological width, junctional epithelium

中图分类号: 

  • R322.4 +1

图 1

种植体周围组织结构示意图 GM:种植体周围黏膜顶端;cJe:结合上皮最冠方;aJe:结合上皮最根方;B:牙槽嵴顶;BIC:种植体与骨开始结合位点。GM-cJe:龈沟上皮的宽度;cJe-aJe:结合上皮的宽度;aJe-BIC:结缔组织的宽度;GM-BIC:生物学宽度。"

表 1

天然牙和种植体周围生物学宽度的区别"

区别 天然牙 种植体
位置 位于牙槽嵴顶冠方 位于牙槽嵴顶根方
尺度 2 mm 3~4 mm
组织学构成 由结合上皮及其下方的纤维结缔组织构成 由上皮(包括龈沟上皮和结合上皮)及其下方的纤维结缔组织构成
纤维的构成 牙龈纤维、牙骨膜纤维、环行纤维、越隔纤维。结缔 只有水平和环形纤维。胶原纤维水平连接到种植体表面
组织中胶原纤维垂直插入牙骨质和牙槽骨中
血供来源 来自牙周膜和骨膜 来自骨膜的末端分支
功能 抵御外界刺激 抵御外界刺激、利于种植区软硬组织重建和指导口腔种植修复过程

表 2

不同文献中报道的天然牙和种植体周围生物学宽度的尺度"

类型 天然牙 种植体
软组织水平 骨组织水平
参考文献 [1] [15] [20] [21] [22]
上皮组织/mm 0.97 1.89 2.32 2.04 2.07
结缔组织/mm 1.07 1.32 1.58 1.28 1.71
生物学宽度/mm 2.04 3.51 3.90 3.32 3.31

图 2

组织结构示意图 GM:牙龈边缘;BHP:种植体表面或其冠向延伸面上稳定的骨最高点;BP:远离种植体表面及其延伸面的骨最高点,即碟形骨吸收的最高点;BIC:种植体与骨开始结合的位点。GM-BHP为3~4 mm,GM-BIC>4 mm。A:纯莫氏锥度连接的种植体周围组织结构;B:种植区骨质碟形骨吸收周围组织结构。"

[1] Gargiulo AW, Wentz FM, Orban B . Dimensions and relations of the dentogingival junction in humans[J]. J Periodontol, 1961,32(3):261-267.
[2] Berglundh T, Lindhe J, Ericsson I , et al. The soft tissue barrier at implants and teeth[J]. Clin Oral Implants Res, 1991,2(2):81-90.
[3] Pippi R . Post-surgical clinical monitoring of soft tissue wound healing in periodontal and implant surgery[J]. Int J Med Sci, 2017,14(8):721-728.
[4] Sorni-Bröker M, Peñarrocha-Diago M, Peñarrocha-Diago M . Factors that influence the position of the peri-implant soft tissues: a review[J]. Med Oral Patol Oral Cir Bucal, 2009,14(9):e475-e479.
[5] Zhang J, Wang HM, Wang Y , et al. Substrate-mediated gene transduction of LAMA3 for promoting biological sealing between titanium surface and gingival epithelium[J]. Colloids Surf B Biointerfaces, 2018,161:314-323.
[6] Jiang Q, Yu YC, Ruan H , et al. Morphological and functional characteristics of human gingival junctional epithelium[J]. BMC Oral Health, 2014,14:30.
[7] Larjava H, Koivisto L, Häkkinen L , et al. Epithelial integrins with special reference to oral epithelia[J]. J Dent Res, 2011,90(12):1367-1376.
doi: 10.1177/0022034511402207
[8] Walko G, Castañón MJ, Wiche G . Molecular architecture and function of the hemidesmosome[J]. Cell Tissue Res, 2015,360(3):529-544.
[9] Ikeda H, Yamaza T, Yoshinari M , et al. Ultrastructural and immunoelectron microscopic studies of the peri-implant epithelium-implant (Ti-6Al-4V) interface of rat maxilla[J]. J Periodontol, 2000,71(6):961-973.
[10] Yang GL, Zhang J, Dong WJ , et al. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces[J]. Sci Rep, 2016,6(1):23423.
[11] Abdallah MN, Abughanam G, Tran SD , et al. Comparative adsorption profiles of basal lamina proteome and gingival cells onto dental and titanium surfaces[J]. Acta Biomater, 2018,73:547-558.
[12] Sculean A, Gruber R, Bosshardt DD . Soft tissue wound healing around teeth and dental implants[J]. J Clin Periodontol, 2014,41(Suppl 15):S6-S22.
[13] Berglundh T, Abrahamsson I, Welander M , et al. Morphogenesis of the peri-implant mucosa: an experimental study in dogs[J]. Clin Oral Implants Res, 2007,18(1):1-8.
[14] Cochran DL, Mau LP, Higginbottom FL , et al. Soft and hard tissue histologic dimensions around dental implants in the canine restored with smaller-diameter abutments: a paradigm shift in peri-implant biology[J]. Int J Oral Maxillofac Implants, 2013,28(2):494-502.
[15] Negri B, López Marí M , Maté Sánchez de Val JE , et al. Soft and harBiological width formation to immediate implants placed at different level in relation to the crestal bone: an experimental study in dogs[J]. Clin Oral Implants Res, 2015,26(7):788-798.
[16] de Sanctis M, Vignoletti F, Discepoli N , et al. Immediate implants at fresh extraction sockets: an experimental study in the beagle dog comparing four different implant systems. Soft tissue findings[J]. J Clin Periodontol, 2010,37(8):769-776.
[17] Judgar R, Giro G, Zenobio E , et al. Biological width around one- and two-piece implants retrieved from human jaws[J]. Biomed Res Int, 2014,2014:850120.
[18] Hermann JS, Buser D, Schenk RK , et al. Biologic width around one- and two-piece titanium implants[J]. Clin Oral Implants Res, 2001,12(6):559-571.
[19] Subramani K, Jung RE, Molenberg A , et al. Biofilm on dental implants: a review of the literature[J]. Int J Oral Maxillofac Implants, 2009,24(4):616-626.
[20] Baffone GM, Botticelli D, Pereira FP , et al. Influence of buccal bony crest width on marginal dimensions of peri-implant hard and soft tissues after implant installation. An experimental study in dogs[J]. Clin Oral Implants Res, 2013,24(3):250-254.
[21] Abrahamsson I, Berglundh T, Glantz PO , et al. The mucosal attachment at different abutments. An experimental study in dogs[J]. J Clin Periodontol, 1998,25(9):721-727.
[22] Welander M, Abrahamsson I, Berglundh T . The mucosal barrier at implant abutments of different materials[J]. Clin Oral Implants Res, 2008,19(7):635-641.
[23] Vacek JS, Gher ME, Assad DA , et al. The dimensions of the human dentogingival junction[J]. Int J Periodontics Restorative Dent, 1994,14(2):154-165.
[24] Tenenbaum H, Schaaf JF, Cuisinier FJ . Histological analysis of the ankylos peri-implant soft tissues in a dog model[J]. Implant Dent, 2003,12(3):259-265.
[25] Fetner M, Fetner A, Koutouzis T , et al. The effects of subcrestal implant placement on crestal bone levels and bone-to-abutment contact: a microcomputed tomographic and histologic study in dogs[J]. Int J Oral Maxillofac Implants, 2015,30(5):1068-1075.
[26] Demiralp KÖ, Akbulut N, Kursun S , et al. Survival rate of short, locking taper implants with a plateau design: a 5-year retrospective study[J]. Biomed Res Int, 2015,2015:197451.
[27] Aloise JP, Curcio R, Laporta MZ , et al. Microbial leakage through the implant-abutment interface of Morse taper implants in vitro[J]. Clin Oral Implants Res, 2010,21(3):328-335.
[28] Lombardo G, Corrocher G, Pighi J , et al. The impact of subcrestal placement on short locking-taper implants placed in posterior maxilla and mandible: a retrospective evaluation on hard and soft tissues stability after 2 years of loading[J]. Minerva Stomatol, 2014,63(11/12):391-402.
[29] Markose J, Eshwar S, Srinivas S , et al. Clinical outcomes of ultrashort sloping shoulder implant design: a survival analysis[J]. Clin Implant Dent Relat Res, 2018,20(4):646-652.
[30] Emecen-Huja P, Eubank TD, Shapiro V , et al. Peri-implant versus periodontal wound healing[J]. J Clin Periodontol, 2013,40(8):816-824.
doi: 10.1111/jcpe.12127
[31] Nakamura M . Histological and immunological char-acteristics of the junctional epithelium[J]. Jpn Dent Sci Rev, 2018,54(2):59-65.
[32] Charalampakis G, Belibasakis GN . Microbiome of peri-implant infections: lessons from conventional, molecular and metagenomic analyses[J]. Virulence, 2015,6(3):183-187.
[33] Carinci F, Lauritano D, Cura F , et al. Prevention of bacterial leakage at implant-abutment connection level: an in vitro study of the efficacy of three different implant systems[J]. J Biol Regul Homeost Agents, 2016,30(2 Suppl 1):69-73.
[34] Larrucea C, Conrado A, Olivares D , et al. Bacterial microleakage at the abutment-implant interface, in vitro study[J]. Clin Implant Dent Relat Res, 2018,20(3):360-367.
[35] Jung RE, Sailer I, Hämmerle CH , et al. In vitro color changes of soft tissues caused by restorative materials[J]. Int J Periodontics Restorative Dent, 2007,27(3):251-257.
[36] Berglundh T, Lindhe J . Dimension of the periimplant mucosa. Biological width revisited[J]. J Clin Periodontol, 1996,23(10):971-973.
[37] Bhat PR, Thakur SL, Kulkarni SS . The influence of soft tissue biotype on the marginal bone changes around dental implants: a 1-year prospective clinico-radiological study[J]. J Indian Soc Periodontol, 2015,19(6):640-644.
[38] Bengazi F, Botticelli D, Favero V , et al. Influence of presence or absence of keratinized mucosa on the alveolar bony crest level as it relates to different buccal marginal bone thicknesses. An experimental study in dogs[J]. Clin Oral Implants Res, 2014,25(9):1065-1071.
[39] Ladwein C, Schmelzeisen R, Nelson K , et al. Is the presence of keratinized mucosa associated with periimplant tissue health? A clinical cross-sectional analysis[J]. Int J Implant Dent, 2015,1(1):11.
[40] Spray JR, Black CG, Morris HF , et al. The influence of bone thickness on facial marginal bone response: stage 1 placement through stage 2 uncovering[J]. Ann Periodontol, 2000,5(1):119-128.
[41] Tarnow DP, Cho SC, Wallace SS . The effect of inter-implant distance on the height of inter-implant bone crest[J]. J Periodontol, 2000,71(4):546-549.
[42] Tarnow D, Elian N, Fletcher P , et al. Vertical distance from the crest of bone to the height of the interproximal papilla between adjacent implants[J]. J Periodontol, 2003,74(12):1785-1788.
[43] Lazzara RJ, Porter SS . Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels[J]. Int J Periodontics Restorative Dent, 2006,26(1):9-17.
[44] van Steenberghe D, De Mars G, Quirynen M , et al. A prospective split-mouth comparative study of two screw-shaped self-tapping pure titanium implant systems[J]. Clin Oral Implants Res, 2000,11(3):202-209.
[45] Abrahamsson I, Zitzmann NU, Berglundh T , et al. The mucosal attachment to titanium implants with different surface characteristics: an experimental study in dogs[J]. J Clin Periodontol, 2002,29(5):448-455.
[46] Blanco J, Caneiro L, Liñares A , et al. Peri-implant soft tissue analyses comparing Ti and ZrO2 abutments: an animal study on beagle dogs[J]. Clin Oral Implants Res, 2016,27(10):1221-1226.
[1] 颜丹,张锡忠,王建国. 螺纹深度对支抗微种植体和颌骨影响的三维有限元分析[J]. 国际口腔医学杂志, 2019, 46(4): 387-392.
[2] 于婉琦,周延民,赵静辉. 口腔种植体新材料的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 488-496.
[3] 黄婕,林云红. 种植体周围角化龈宽度与种植体周围骨高度的相关性[J]. 国际口腔医学杂志, 2019, 46(2): 149-155.
[4] 曹焜,李家锋,孙玉华,鲍强,卢秋宁,唐巍. 下颌下窝的锥形束CT影像分析[J]. 国际口腔医学杂志, 2019, 46(2): 209-212.
[5] 刘育豪,袁泉,张士文. 基于共价接枝的钛种植体载药抗菌涂层的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 228-233.
[6] 陈曦,于海洋. 聚醚醚酮在口腔种植与修复领域的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 657-665.
[7] 祁星颖,郑国莹,隋磊. 钛种植体表面形貌对成骨的影响[J]. 国际口腔医学杂志, 2018, 45(5): 527-533.
[8] 黄海霞, 兰玉燕, 张昊, 潘兰兰, 郭玲, 刘敏. 慢性牙周炎患者种植修复后种植体牙周指数及龈沟液炎性因子水平的变化研究[J]. 国际口腔医学杂志, 2018, 45(4): 396-402.
[9] 万乾炳. 氧化锆基台的研究现状和临床应用效果[J]. 国际口腔医学杂志, 2018, 45(1): 1-8.
[10] 曾婷艳, 黄生高. 种植体支抗稳定性的三维有限元分析[J]. 国际口腔医学杂志, 2018, 45(1): 112-118.
[11] 夏婷, 施斌. 减少粘接固位种植牙冠周围残留粘接剂方法的研究进展[J]. 国际口腔医学杂志, 2017, 44(6): 721-725.
[12] 徐迅, 黄建生, 甘泽坤, 罗震. 上颌第一磨牙区腭侧骨板的锥形束CT测量结果及其临床意义[J]. 国际口腔医学杂志, 2017, 44(6): 686-690.
[13] 范盛梓, 谢志刚. 牙龈生物型对种植牙美学影响的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 580-582.
[14] 伍颖颖,宫苹. 胰岛素对糖尿病大鼠种植体周骨组织代谢影响的研究[J]. 国际口腔医学杂志, 2017, 44(2): 183-188.
[15] 牛学刚1 王小勇2. 天然牙与种植体联合支持修复牙列缺损的研究进展[J]. 国际口腔医学杂志, 2016, 43(5): 614-618.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!