国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (2): 186-190.doi: 10.7518/gjkq.2019023
吕慧欣1,杜留熠1,王鹞1,于维先2,任静宜1,顾芯铭1,周延民1()
Huixin Lü1,Liuyi Du1,Yao Wang1,Weixian Yu2,Jingyi Ren1,Xinming Gu1,Yanmin Zhou1()
摘要:
炎症小体是存在于细胞质的多蛋白质复合物,参与机体的固有免疫反应,活化促炎因子白细胞介素-1β等介导了细胞的死亡,对炎症的进程有重要的调控作用。牙周炎是由多种牙周病致病菌(例如牙龈卟啉单胞菌)引起的炎性破坏性疾病。细菌菌体以及其毒性成分可以引发多种炎症小体的聚集组装,最终导致牙周组织的破坏等变化。本文将就机体发生牙周炎过程中炎症小体的产生和致病机制进行综述。
中图分类号:
[1] |
Martinon F, Burns K, Tschopp J . The inflammasome: a molecular platform triggering activation of inflam-matory caspases and processing of proIL-β[J]. Mol Cell, 2002,10(2):417-426.
doi: 10.1016/S1097-2765(02)00599-3 |
[2] |
Xue F, Shu R, Xie Y . The expression of NLRP3, NLRP1 and AIM2 in the gingival tissue of periodon-titis patients: RT-PCR study and immunohistoche-mistry[J]. Arch Oral Biol, 2015,60(6):948-958.
doi: 10.1016/j.archoralbio.2015.03.005 pmid: 25841070 |
[3] |
Broz P, Monack DM . Molecular mechanisms of in-flammasome activation during microbial infections[J]. Immunol Rev, 2011,243(1):174-190.
doi: 10.1111/j.1600-065X.2011.01041.x pmid: 3170129 |
[4] |
van Ooij C . Immunology: NLRP6 keeps the bad ba- cteria at bay[J]. Nat Rev Microbiol, 2011,9(7):481.
doi: 10.1038/nrmicro2599 |
[5] |
Kummer JA, Broekhuizen R, Everett H , et al. In-flammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflam-matory response[J]. J Histochem Cytochem, 2007,55(5):443-452.
doi: 10.1369/jhc.6A7101.2006 pmid: 17164409 |
[6] |
Kaushal V, Leblanc AC . Inflammasome-mediated activation of caspase-1 and caspase-6 in primary human neurons[J]. Alzheimers Dementia, 2012,8(4):303.
doi: 10.1016/j.jalz.2012.05.825 |
[7] |
Eibl C, Grigoriu S, Hessenberger M , et al. Structural and functional analysis of the NLRP4 pyrin domain[J]. Biochemistry, 2012,51(37):7330-7341.
doi: 10.1021/bi3007059 pmid: 3445046 |
[8] |
Jounai N, Kobiyama K, Shiina M , et al. NLRP4 ne-gatively regulates autophagic processes through an association with beclin1[J]. J Immunol, 2011,186(3):1646-1655.
doi: 10.4049/jimmunol.1001654 pmid: 21209283 |
[9] |
Bürckstümmer T, Baumann C, Blüml S , et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome[J]. Nat Immunol, 2009,10(3):266-272.
doi: 10.1038/ni.1702 pmid: 19158679 |
[10] |
Adamczak SE, de Rivero Vaccari JP, Dale G , et al. Pyroptotic neuronal cell death mediated by the AIM2 inflammasome[J]. J Cereb Blood Flow Metab, 2014,34(4):621-629.
doi: 10.1038/jcbfm.2013.236 pmid: 3982080 |
[11] |
Bauernfeind FG, Horvath G, Stutz A , et al. Cutting edge: NF-κB activating pattern recognition and cyto-kine receptors license NLRP3 inflammasome activa-tion by regulating NLRP3 expression[J]. J Immunol, 2009,183(2):787-791.
doi: 10.4049/jimmunol.0901363 pmid: 19570822 |
[12] |
Hao LY, Liu X, Franchi L . Inflammasomes in inflam-matory bowel disease pathogenesis[J]. Curr Opin Gastroenterol, 2013,29(4):363-369.
doi: 10.1097/MOG.0b013e32836157a4 pmid: 23689522 |
[13] |
Stehlik C, Dorfleutner A . COPs and POPs: modulators of inflammasome activity[J]. J Immunol, 2007,179(12):7993-7998.
doi: 10.4049/jimmunol.179.12.7993 pmid: 18056338 |
[14] |
Guarda G, Braun M, Staehli F , et al. TypeⅠinter-feron inhibits interleukin-1 production and inflamma-some activation[J]. Immunity, 2011,34(2):213-223.
doi: 10.1016/j.immuni.2011.02.006 |
[15] |
Eigenbrod T, Bode KA, Dalpke AH . Early inhibition of IL-1β expression by IFN-γ is mediated by im-paired binding of NF-κB to the IL-1β promoter but is independent of nitric oxide[J]. J Immunol, 2013,190(12):6533-6541.
doi: 10.4049/jimmunol.1300324 |
[16] |
Guarda G, Dostert C, Staehli F , et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes[J]. Nature, 2009,460(7252):269-273.
doi: 10.1038/nature08100 pmid: 19494813 |
[17] |
Brodsky IE, Palm NW, Sadanand S , et al. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type Ⅲ secretion system[J]. Cell Host Microbe, 2010,7(5):376-387.
doi: 10.1016/j.chom.2010.04.009 pmid: 20478539 |
[18] |
Doitsh G, Galloway NL, Geng X , et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 in- fection[J]. Nature, 2014,505(7484):509-514.
doi: 10.1038/nature12940 |
[19] |
Pierini R, Juruj C, Perret M , et al. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages[J]. Cell Death Differ, 2012,19(10):1709-1721.
doi: 10.1038/cdd.2012.51 pmid: 3438500 |
[20] |
Allaeys I, Marceau F, Poubelle PE . NLRP3 promotes autophagy of urate crystals phagocytized by human osteoblasts[J]. Arthritis Res Ther, 2013,15(6):R176.
doi: 10.1186/ar4365 pmid: 4061723 |
[21] |
Yamaguchi Y, Kurita-Ochiai T, Kobayashi R , et al. Regulation of the NLRP3 inflammasome in Por-phyromonas gingivalis-accelerated periodontal disease[J]. Inflamm Res, 2017,66(1):59-65.
doi: 10.1007/s00011-016-0992-4 pmid: 27665233 |
[22] |
Bostanci N, Meier A, Guggenheim B , et al. Regula-tion of NLRP3 and AIM2 inflammasome gene ex-pression levels in gingival fibroblasts by oral bio-films[J]. Cell Immunol, 2011,270(1):88-93.
doi: 10.1016/j.cellimm.2011.04.002 pmid: 21550598 |
[23] |
Belibasakis GN, Guggenheim B, Bostanci N . Down-regulation of NLRP3 inflammasome in gingival fibroblasts by subgingival biofilms: involvement of Porphyromonas gingivalis[J]. Innate Immun, 2013,19(1):3-9.
doi: 10.1177/1753425912444767 pmid: 22522430 |
[24] |
Zupin L, Navarra CO, Robino A , et al. NLRC5 polymorphism is associated with susceptibility to chronic periodontitis[J]. Immunobiology, 2017,222(5):704-708.
doi: 10.1016/j.imbio.2017.01.001 pmid: 28122660 |
[25] |
Taxman DJ, Swanson KV, Broglie PM , et al. Por-phyromonas gingivalis mediates inflammasome repression in polymicrobial cultures through a novel mechanism involving reduced endocytosis[J]. J Biol Chem, 2012,287(39):32791-32799.
doi: 10.1074/jbc.M112.401737 pmid: 22843689 |
[26] |
Morandini AC, Ramos-Junior ES, Potempa J , et al. Porphyromonas gingivalis fimbriae dampen P2X7-dependent interleukin-1β secretion[J]. J Innate Immun, 2014,6(6):831-845.
doi: 10.1159/000363338 |
[27] |
Belibasakis GN, Johansson A . Aggregatibacter ac-tinomycetemcomitans targets NLRP3 and NLRP6 inflammasome expression in human mononuclear leukocytes[J]. Cytokine, 2012,59(1):124-130.
doi: 10.1016/j.cyto.2012.03.016 pmid: 22503597 |
[28] |
Okinaga T, Ariyoshi W, Nishihara T . Aggregatibacter actinomycetemcomitans invasion induces inter-leukin-1β production through reactive oxygen species and cathepsin B[J]. J Interferon Cytokine Res, 2015,35(6):431-440.
doi: 10.1089/jir.2014.0127 pmid: 25789553 |
[29] |
Lu A, Wu H . Structural mechanisms of inflammasome assembly[J]. FEBS J, 2015,282(3):435-444.
doi: 10.1111/febs.13133 pmid: 25354325 |
[30] |
Li H, Zhou X, Zhang J . Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced inflamma-some activation in human gingival epithelial cells[J]. Int J Mol Med, 2014,34(4):1039-1044.
doi: 10.3892/ijmm.2014.1865 pmid: 25069505 |
[1] | 王晓宇,朱昭蓉,吴亚菲,赵蕾. 中性粒细胞细胞外陷阱网与牙周炎的相关性研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 304-310. |
[2] | 陈斌,徐蓉蓉,张家鼎,闫福华. 重度牙周炎患牙的保存治疗[J]. 国际口腔医学杂志, 2020, 47(2): 125-130. |
[3] | 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120. |
[4] | 周婕妤,刘琳,吴亚菲,赵蕾. 微小RNA介导的牙周炎与动脉粥样硬化相关机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 76-83. |
[5] | 张智颖,刘东娟,潘亚萍. 牙龈卟啉单胞菌外膜囊泡的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 670-674. |
[6] | 姜亦洋,刘怡. 甲基化对牙周炎发生与发展的影响及临床应用[J]. 国际口腔医学杂志, 2019, 46(5): 593-603. |
[7] | 张佳喻,罗宁,苗棣,应绚,陈悦. 意向性牙再植治疗重度牙周炎患牙的临床研究[J]. 国际口腔医学杂志, 2019, 46(4): 400-406. |
[8] | 原振英,管翠强,南欣荣. DNA甲基化与口腔疾病的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 437-441. |
[9] | 蒙明梅,郭维华,周学东,邹静. 白细胞介素-1α信号通路在牙萌出中的研究[J]. 国际口腔医学杂志, 2019, 46(3): 253-257. |
[10] | 郭淑娟, 刘倩, 丁一. 牙周病和植体周病国际新分类简介[J]. 国际口腔医学杂志, 2019, 46(2): 125-134. |
[11] | 聂然,郭天奇,李雪,裴婷婷,秦勤,周延民. 与牙周炎相关的组织蛋白酶研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 197-202. |
[12] | 王鹞,吕慧欣,杜留熠,顾芯铭,任静宜,于维先,周延民. 软脑膜在外周炎症影响神经炎症过程中的作用[J]. 国际口腔医学杂志, 2019, 46(2): 223-227. |
[13] | 杨卓,张盛丹,刘程程,丁一. 侵袭性牙周炎唾液诊断标记物的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 55-61. |
[14] | 许彩薇,薛毅,吴仲寅. 骨硬化蛋白与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 703-709. |
[15] | 刘芳,蔡扬. 白细胞介素-35及其与口腔疾病的关系[J]. 国际口腔医学杂志, 2018, 45(6): 716-722. |
|