国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (2): 223-227.doi: 10.7518/gjkq.2019022

• 综述 • 上一篇    下一篇

软脑膜在外周炎症影响神经炎症过程中的作用

王鹞1,吕慧欣1,杜留熠1,顾芯铭1,任静宜1,于维先2,周延民1()   

  1. 1.吉林大学口腔医院种植中心 长春 130021
    2.吉林省牙发育及颌骨重塑与再生省重点实验室 长春 130021
  • 收稿日期:2018-06-13 修回日期:2018-12-10 出版日期:2019-03-01 发布日期:2019-03-15
  • 通讯作者: 周延民 E-mail:Zhouym62@163.com
  • 作者简介:王鹞,学士,Email: 547893076@qq.com
  • 基金资助:
    国家自然科学基金(81570983);吉林大学研究生创新基金(2017014);吉林省科技厅基础处白求恩医学专项资金(20160101138JC)

Roles of leptomeninges in the effect of chronic peripheral inflammation on neuroinflammation

Yao Wang1,Huixin Lü1,Liuyi Du1,Xinming Gu1,Jingyi Ren1,Weixian Yu2,Yanmin Zhou1()   

  1. 1. Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130021, China
    2.Key Laboratory of Mechanism of Tooth Development and Jaw Bone Remodeling and Regeneration in Jilin Province, Changchun 130021, China
  • Received:2018-06-13 Revised:2018-12-10 Online:2019-03-01 Published:2019-03-15
  • Contact: Yanmin Zhou E-mail:Zhouym62@163.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81570983);Postgraduate Innovation Fund of Jilin University(2017014);Special Fund of Bethune Medicine, Basic Office of Science and Technology Department of Jilin Province(20160101138JC)

摘要:

阿尔茨海默病、帕金森病、额颞痴呆等慢性中枢神经退行性疾病的发病机制一直是学术界争论的热点问题。在这些疾病中,神经炎症是共有的特点。许多全身性疾病(如糖尿病、动脉粥样硬化及外周炎症)都与神经炎症的产生和加剧有关。越来越多的临床证据显示,一些常见的外周慢性炎症(如牙周炎等)与神经炎症的发生和发展有着密切的关系。近年来,一些学者的研究指出,软脑膜可能在这一相关性中起到了介导炎症信号传递的关键作用。本文就软脑膜在外周炎症影响神经炎症的过程中所起的作用进行综述,旨在进一步揭示神经炎症的病理过程,探究牙周炎和神经系统病变的内在联系,为众多慢性中枢神经退行性疾病的预防和治疗提供新途径。

关键词: 软脑膜, 神经炎症, 外周炎症, 牙周炎, 炎症信号

Abstract:

The pathogenesis of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease dementia and frontotemporal dementia, has remained controversial in academic circles. However, the presence of neuroinflammation is a common feature in these neurodegenerative diseases. Moreover, systemic diseases, such as diabetes, atherosclerosis and peripheral inflammation, are associated with the occurrence and exacerbation of neuroinflammation. Many pieces of clinical evidence showed a correlation between some common kinds of chronic peripheral inflammation, for instance periodontitis, and neurodegenerative disease. To date, some studies indicated that leptomeninges possibly plays as the courier who transfers systemic inflammatory signals in this connection. This review retrospectively analysed the role of leptomeninges in this potential connection between peripheral inflammation neuroinflammation, described the pathological process of neuroinflammation and elucidated the relation between neurodegenerative diseases and paradentitis to develop new therapies and prevention of neurodegenerative diseases.

Key words: leptomeninges, neuroinflammation, peripheral inflammation, periodontitis, inflammatory signal

中图分类号: 

  • R781.4 +2
[1] Galic MA, Riazi K, Pittman QJ . Cytokines and brain excitability[J]. Front Neuroendocrinol, 2012,33(1):116-125.
doi: 10.1016/j.yfrne.2011.12.002
[2] Liu X, Nemeth DP, Tarr AJ , et al. Euflammation at- tenuates peripheral inflammation-induced neuroin-flammation and mitigates immune-to-brain signaling[J]. Brain Behav Immun, 2016,54:140-148.
doi: 10.1016/j.bbi.2016.01.018 pmid: 26812118
[3] Huang L, Li X, Roberts J , et al. Differential role of P-glycoprotein and breast cancer resistance protein in drug distribution into brain, CSF and peripheral nerve tissues in rats[J]. Xenobiotica, 2015,45(6):547-555.
doi: 10.3109/00498254.2014.997324 pmid: 25539457
[4] Decimo I, Fumagalli G, Berton V , et al. Meninges: from protective membrane to stem cell niche[J]. Am J Stem Cells, 2012,1(2):92-105.
pmid: 23671802
[5] Yasuda K, Cline C, Vogel P , et al. Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier[J]. Drug Metab Dispos, 2013,41(4):923-931.
doi: 10.1124/dmd.112.050344 pmid: 3222223298861
[6] Stolp HB, Liddelow SA, Sá-Pereira I , et al. Immune responses at brain barriers and implications for brain development and neurological function in later life[J]. Front Integr Neurosci, 2013,7:61.
doi: 10.3389/fnint.2013.00061 pmid: 3750212
[7] Wang T, Wang BR, Zhao HZ , et al. Lipopolysaccharide up-regulates IL-6R alpha expression in cultured le-ptomeningeal cells via activation of ERK1/2 pathway[J]. Neurochem Res, 2008,33(9):1901-1910.
doi: 10.1007/s11064-008-9667-z pmid: 18357518
[8] Liddelow SA, Dziegielewska KM, Ek CJ , et al. Cor-rection: mechanisms that determine the internal en-vironment of the developing brain: a transcriptomic, functional and ultrastructural approach[J]. PLoS One, 2016,11(1):e0147680.
doi: 10.1371/journal.pone.0065629 pmid: 3699566
[9] Pasqualetti G, Brooks DJ, Edison P . The role of ne-uroinflammation in dementias[J]. Curr Neurol Neurosci Rep, 2015,15(4):17.
doi: 10.1007/s11910-015-0531-7 pmid: 25716012
[10] Kranjac D, McLinden KA, Deodati LE et al. Perip-heral bacterial endotoxin administration triggers both memory consolidation and reconsolidation deficits in mice[J]. Brain Behav Immun, 2012,26(1):109-121.
doi: 10.1016/j.bbi.2011.08.005 pmid: 21889586
[11] Semmler A, Frisch C, Debeir T , et al. Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model[J]. Exp Neurol, 2007,204(2):733-740.
doi: 10.1016/j.expneurol.2007.01.003 pmid: 17306796
[12] Shi FD . Neuroinflammation[J]. Neurosci Bull, 2015,31(6):714-716.
doi: 10.1007/s12264-015-1568-y
[13] Muldoon LL, Alvarez JI, Begley DJ , et al. Immunologic privilege in the central nervous system and the blood-brain barrier[J]. J Cereb Blood Flow Metab, 2013,33(1):13-21.
doi: 10.1038/jcbfm.2012.153 pmid: 23072749
[14] Brøchner CB, Holst CB, Møllgård K . Outer brain barriers in rat and human development[J]. Front Ne-urosci, 2015,9:75.
doi: 10.3389/fnins.2015.00075 pmid: 4360706
[15] Wu Z, Nakanishi H . Connection between periodon-titis and Alzheimer’s disease: possible roles of mi-croglia and leptomeningeal cells[J]. J Pharmacol Sci, 2014,126(1):8-13.
doi: 10.1254/jphs.14R11CP pmid: 25168594
[16] Dai L, DeFee MR, Cao Y et al. Lipoteichoic acid (LTA) and lipopolysaccharides (LPS) from perio-dontal pathogenic bacteria facilitate oncogenic her-pesvirus infection within primary oral cells[J]. PLoS One, 2014,9(6):e101326.
doi: 10.1371/journal.pone.0101326 pmid: 4074159
[17] 辛颖, 胡月, 唐琪 , 等. 病原体相关分子模式与牙周炎的关系[J]. 华西口腔医学杂志, 2016,34(1):96-99.
doi: 10.7518/hxkq.2016.01.019
Xin Y, Hu Y, Tang Q , et al. Correlation between pathogen-associated molecular patterns and perio-dontitis[J]. West Chin J Stomatol, 2016,34(1):96-99.
doi: 10.7518/hxkq.2016.01.019
[18] 李卫, 边艳青 . 外周炎症及慢性应激对认知功能的影响及影响机制[J]. 免疫学杂志, 2014,30(7):650-653.
Li W, Bian YQ . The effects of peripheral inflammation and chronic stress on cognitive function and its mechanisms[J]. Immunol J, 2014,30(7):650-653.
[19] Singhrao SK, Harding A, Simmons T , et al. Oral inflammation, tooth loss, risk factors, and association with progression of Alzheimer’s disease[J]. J Alzheimer’s Dis, 2014,42:723-737.
doi: 10.3233/JAD-140387 pmid: 24946875
[20] Wu Z, Zhang J, Nakanishi H . Leptomeningeal cells activate microglia and astrocytes to induce IL-10 production by releasing pro-inflammatory cytokines during systemic inflammation[J]. J Neuroimmunol, 2005,167(1/2):90-98.
doi: 10.1016/j.jneuroim.2005.06.025 pmid: 16095726
[21] Liu Y, Wu Z, Zhang X , et al. Leptomeningeal cells transduce peripheral macrophages inflammatory signal to microglia in reponse to Porphyromonas gingivalis LPS[J]. Mediators Inflamm, 2013,2013:407562.
doi: 10.1155/2013/407562 pmid: 3865690
[22] Berker E, Kantarci A, Hasturk H , et al. Blocking proinflammatory cytokine release modulates peri-pheral blood mononuclear cell response to Porphy-romonas gingivalis[J]. J Periodontol, 2013,84(9):1337-1345.
doi: 10.1902/jop.2012.120422 pmid: 3935330
[23] Foey AD, Crean S . Macrophage subset sensitivity to endotoxin tolerisation by Porphyromonas gingivalis[J]. PLoS One, 2013,8(7):e67955.
doi: 10.1371/journal.pone.0067955 pmid: 3711904
[24] Chen JH, Ke KF, Lu JH , et al. Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1-42-induced Alzheimer’s disease model rats[J]. PLoS One, 2015,10(2):e0116549.
doi: 10.1371/journal.pone.0116549 pmid: 25658940
[25] Wu Z, Hayashi Y, Zhang J , et al. Involvement of prostaglandin E2 released from leptomeningeal cells in increased expression of transforming growth factor-beta in glial cells and cortical neurons during systemic inflammation[J]. J Neurosci Res, 2007,85(1):184-192.
doi: 10.1002/(ISSN)1097-4547
[26] Skaper SD, Facci L, Giusti P . Mast cells, glia and neuroinflammation: partners in crime[J] Immuno-logy, 2014,141(3):314-327.
doi: 10.1111/imm.12170 pmid: 24032675
[27] Rodgers J, Bradley B, Kennedy PG , et al. Central nervous system parasitosis and neuroinflammation ameliorated by systemic IL-10 administration in trypanosoma brucei-infected mice[J]. PLoS Negl Trop Dis, 2015,9(10):e0004201.
doi: 10.1371/journal.pntd.0004201 pmid: 26505761
[28] Hayder M, Varilh M, Turrin CO , et al. Phosphorus-based dendrimer ABP treats neuroinflammation by promoting IL-10-producing CD4 + T Cells [J]. Bio-macromolecules, 2015,16(11):3425-3433.
[29] Wilson KD, Stutz SJ, Ochoa LF , et al. Behavioural and neurological symptoms accompanied by cellular neuroinflammation in IL-10-deficient mice infected with Plasmodium chabaudi[J]. Malar J, 2016,15(1):428.
doi: 10.1186/s12936-016-1477-1 pmid: 4995805
[30] Ruocco A, Nicole O, Docagne F , et al. A transforming growth factor-β antagonist unmasks the neuropro-tective role of this endogenous cytokine in exci-totoxic and ischemic brain injury[J]. J Cereb Blood Flow Metab, 1999,19(12):1345-1353.
doi: 10.1097/00004647-199912000-00008 pmid: 10598939
[31] Wu Z, Tokuda Y, Zhang XW , et al. Age-dependent responses of glial cells and leptomeninges during systemic inflammation[J]. Neurobiol Dis, 2008,32(3):543-551.
doi: 10.1016/j.nbd.2008.09.002 pmid: 18848892
[1] 王晓宇,朱昭蓉,吴亚菲,赵蕾. 中性粒细胞细胞外陷阱网与牙周炎的相关性研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 304-310.
[2] 陈斌,徐蓉蓉,张家鼎,闫福华. 重度牙周炎患牙的保存治疗[J]. 国际口腔医学杂志, 2020, 47(2): 125-130.
[3] 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120.
[4] 周婕妤,刘琳,吴亚菲,赵蕾. 微小RNA介导的牙周炎与动脉粥样硬化相关机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 76-83.
[5] 张智颖,刘东娟,潘亚萍. 牙龈卟啉单胞菌外膜囊泡的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 670-674.
[6] 姜亦洋,刘怡. 甲基化对牙周炎发生与发展的影响及临床应用[J]. 国际口腔医学杂志, 2019, 46(5): 593-603.
[7] 张佳喻,罗宁,苗棣,应绚,陈悦. 意向性牙再植治疗重度牙周炎患牙的临床研究[J]. 国际口腔医学杂志, 2019, 46(4): 400-406.
[8] 原振英,管翠强,南欣荣. DNA甲基化与口腔疾病的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 437-441.
[9] 郭淑娟, 刘倩, 丁一. 牙周病和植体周病国际新分类简介[J]. 国际口腔医学杂志, 2019, 46(2): 125-134.
[10] 吕慧欣,杜留熠,王鹞,于维先,任静宜,顾芯铭,周延民. 炎症小体在牙周炎中的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 186-190.
[11] 聂然,郭天奇,李雪,裴婷婷,秦勤,周延民. 与牙周炎相关的组织蛋白酶研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 197-202.
[12] 杨卓,张盛丹,刘程程,丁一. 侵袭性牙周炎唾液诊断标记物的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 55-61.
[13] 许彩薇,薛毅,吴仲寅. 骨硬化蛋白与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 703-709.
[14] 田江雪,莫龙义,贾小玥,刘程程,徐欣. 转化生长因子β在牙周炎发生发展中的作用及其机制[J]. 国际口腔医学杂志, 2018, 45(5): 553-559.
[15] 姜懿轩,莫龙义,贾小玥,徐欣,刘程程. 植物雌激素防治牙周炎的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 571-578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .