国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (6): 640-645.doi: 10.7518/gjkq.2018.06.004
Dingli Feng1,2,Lidan Zhuo2,Di Lu3,Hongyan Guo2()
摘要:
微小RNA(miRNA)主要通过不完全的碱基配对,在转录后水平调控基因的表达。在间充质干细胞软骨向分化过程中,有许多不同miRNA的表达,其对软骨分化起着重要的调节作用。近年来,miRNA具有成为软骨疾病治疗靶点的可能性,促进了研究人员强有力的调查,以求深入地了解miRNA在软骨发育中的作用机制。本文结合相关文献,对间充质干细胞软骨向分化过程中miRNA的表达及某些miRNA在调控软骨分化过程中的具体作用途径进行综述。
中图分类号:
[1] |
Gobbi A, Karnatzikos G, Sankineani SR . One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee[J]. Am J Sports Med, 2014,42(3):648-657.
doi: 10.1177/0363546513518007 pmid: 24458240 |
[2] |
Bernhard JC, Vunjak-Novakovic G . Should we use cells, biomaterials, or tissue engineering for cartilage regeneration[J]. Stem Cell Res Ther, 2016,7:56.
doi: 10.1186/s13287-016-0314-3 pmid: 4836146 |
[3] |
Ham O, Lee CY, Kim R , et al. Therapeutic potential of differentiated mesenchymal stem cells for treat-ment of osteoarthritis[J]. Int J Mol Sci, 2015,16(7):14961-14978.
doi: 10.3390/ijms160714961 pmid: 4519882 |
[4] |
Carthew RW, Sontheimer EJ . Origins and Mechanisms of miRNAs and siRNAs[J]. Cell, 2009,136(4):642-655.
doi: 10.1016/j.cell.2009.01.035 pmid: 2675692 |
[5] |
Yang B, Guo HF, Zhang YL , et al. The microRNA expression profiles of mouse mesenchymal stem cell during chondrogenic differentiation[J]. BMB Rep, 2011,44(1):28-33.
doi: 10.5483/BMBRep.2011.44.1.28 pmid: 21266103 |
[6] |
Zhang Z, Kang Y, Zhang Z , et al. Expression of microRNAs during chondrogenesis of human adi-pose-derived stem cells[J]. Osteoarthr Cartil, 2012,20(12):1638-1646.
doi: 10.1016/j.joca.2012.08.024 pmid: 22947280 |
[7] |
Yang Z, Hao J, Hu ZM . MicroRNA expression pro-files in human adipose-derived stem cells during chondrogenic differentiation[J]. Int J Mol Med, 2015,35(3):579-586.
doi: 10.3892/ijmm.2014.2051 pmid: 25543998 |
[8] |
Akiyama H . Control of chondrogenesis by the trans-cription factor Sox9[J]. Mod Rheumatol, 2008,18(3):213-219.
doi: 10.3109/s10165-008-0048-x pmid: 18351289 |
[9] |
Han Y, Lefebvre V . L-Sox5 and Sox6 drive expression of the aggrecan gene in cartilage by securing binding of Sox9 to a far-upstream enhancer[J]. Mol Cell Biol, 2008,28(16):4999-5013.
doi: 10.1128/MCB.00695-08 |
[10] |
Yang B, Guo HF, Zhang YL , et al. MicroRNA-145 regulates chondrogenic differentiation of mesenchy-mal stem cells by targeting Sox9[J]. PLoS One, 2011,6(7):e21679.
doi: 10.1371/journal.pone.0021679 pmid: 21799743 |
[11] |
Martinez-Sanchez A, Dudek KA, Murphy CL . Re-gulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145)[J]. J Biol Chem, 2012,287(2):916-924.
doi: 10.1074/jbc.M111.302430 pmid: 22102413 |
[12] |
Lee S, Yoon DS, Paik S , et al. Microrna-495 inhibits chondrogenic differentiation in human mesenchymal stem cells by targeting Sox9[J]. Stem Cells Dev, 2014,23(15):1798-1808.
doi: 10.1089/scd.2013.0609 pmid: 24654627 |
[13] |
Lin X, Wu L, Zhang ZM , et al. MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops[J]. J Bone Miner Res, 2014,29(7):1575-1585.
doi: 10.1002/jbmr.2163 pmid: 24347469 |
[14] |
Guérit D, Philipot D, Chuchana P , et al. Sox9-regula-ted miRNA-574-3p inhibits chondrogenic differen-tiation of mesenchymal stem cells[J]. PLoS One, 2013,8(4):e62582.
doi: 10.1371/journal.pone.0062582 pmid: 23626837 |
[15] |
Dudek KA, Lafont JE, Martinez-Sanchez A , et al. TypeⅡcollagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes[J]. J Biol Chem, 2010,285(32):24381-24387.
doi: 10.1074/jbc.M110.111328 pmid: 2915673 |
[16] |
Xu J, Kang Y, Liao WM , et al. MiR-194 regulates chondrogenic differentiation of human adipose-de-rived stem cells by targeting Sox5[J]. PLoS One, 2012,7(3):e31861.
doi: 10.1371/journal.pone.0031861 |
[17] |
Parvizi J, Zmistowski B, Berbari EF , et al. New de-finition for periprosthetic joint infection: from the workgroup of the Musculoskeletal Infection Society[J]. Clin Orthop Relat Res, 2011,469(11):2992-2994.
doi: 10.1007/s11999-011-2102-9 |
[18] |
Buechli ME, Lamarre J, Koch TG . MicroRNA-140 expression during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells[J]. Stem Cells Dev, 2013,22(8):1288-1296.
doi: 10.1089/scd.2012.0411 pmid: 23157248 |
[19] |
Miyaki S, Nakasa T, Otsuki S , et al. MicroRNA-140 is expressed in differentiated human articular chon-drocytes and modulates interleukin-1 responses[J]. Arthritis Rheum, 2009,60(9):2723-2730.
doi: 10.1002/art.24745 pmid: 2806094 |
[20] |
Nicolas FE, Pais H, Schwach F , et al. Mrna expres-sion profiling reveals conserved and non-conserved miR-140 targets[J]. RNA Biol, 2011,8(4):607-615.
doi: 10.4161/rna.8.4.15390 pmid: 21720209 |
[21] |
Zhou XZ, Wang J, Sun HT , et al. MicroRNA-99a regulates early chondrogenic differentiation of rat mesenchymal stem cells by targeting the BMPR2 gene[J]. Cell Tissue Res, 2016,366(1):143-153.
doi: 10.1007/s00441-016-2416-8 pmid: 27177866 |
[22] |
Lorda-Diez CI, Montero JA, Diaz-Mendoza MJ , et al. Defining the earliest transcriptional steps of chondrogenic progenitor specification during the formation of the digits in the embryonic limb[J]. PLoS One, 2011,6(9):e24546.
doi: 10.1371/journal.pone.0024546 pmid: 3172225 |
[23] |
Hou CH, Yang ZB, Kang Y , et al. MiR-193b regula-tes early chondrogenesis by inhibiting the TGF-beta2 signaling pathway[J]. FEBS Lett, 2015,589(9):1040-1047.
doi: 10.1016/j.febslet.2015.02.017 pmid: 25728278 |
[24] |
Lin E, Kong L, Bai XH , et al. Mir-199a, a bone mor-phogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1[J]. J Biol Chem, 2009,284(17):11326-11335.
doi: 10.1074/jbc.M807709200 pmid: 2670138 |
[25] |
Pais H, Nicolas FE, Soond SM , et al. Analyzing mRNA expression identifies Smad3 as a microRNA-target regulated only at protein level[J]. RNA, 2010,16(3):489-494.
doi: 10.1261/rna.1701210 pmid: 20071455 |
[26] |
Anderson BA , McAlinden A. Mir-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells[J]. J Orthop Res, 2017,35(11):2369-2377.
doi: 10.1002/jor.23552 pmid: 28244607 |
[27] |
Tian Y, Guo R, Shi B , et al. MicroRNA-30a pro-motes chondrogenic differentiation of mesenchymal stem cells through inhibiting Delta-like 4 expression[J]. Life Sci, 2016,148:220-228.
doi: 10.1016/j.lfs.2016.02.031 |
[28] |
Zhang YJ, Huang XH, Yuan YH . MicroRNA-410 promotes chondrogenic differentiation of human bone marrow mesenchymal stem cells through down-regulating Wnt3a[J]. Am J Transl Res, 2017,9(1):136-145.
pmid: 28123640 |
[29] |
Nah GS, Lim ZW, Tay BH , et al. Runx family genes in a cartilaginous fish, the elephant shark (Callor-hinchus milii)[J]. PLoS One, 2014,9(4):e93816.
doi: 10.1371/journal.pone.0093816 pmid: 24699678 |
[30] |
Zhang ZQ, Hou CH, Meng FG , et al. MiR-455-3p regulates early chondrogenic differentiation via inhi-biting Runx2[J]. FEBS Lett, 2015,589(23):3671-3678.
doi: 10.1016/j.febslet.2015.09.032 pmid: 26474644 |
[31] |
Ham O, Song B, Lee SY , et al. The role of micro-RNA-23b in the differentiation of MSC into chon-drocyte by targeting protein kinase A signaling[J]. Biomaterials, 2012,33(18):4500-4507.
doi: 10.1016/j.biomaterials.2012.03.025 pmid: 22449550 |
[32] |
Tuddenham L, Wheeler G, Ntounia-Fousara S , et al. The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells[J]. FEBS Lett, 2006,580(17):4214-4217.
doi: 10.1016/j.febslet.2006.06.080 pmid: 16828749 |
[1] | 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262. |
[2] | 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269. |
[3] | 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277. |
[4] | 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151. |
[5] | 周婕妤,刘琳,吴亚菲,赵蕾. 微小RNA介导的牙周炎与动脉粥样硬化相关机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 76-83. |
[6] | 刘志凯,王淳艺,李春洁. 胚胎小鼠颌下腺分支形态发生及其影响因素[J]. 国际口腔医学杂志, 2019, 46(1): 43-47. |
[7] | 方川,李雅冬. 微小RNA在口腔鳞状细胞癌中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 646-651. |
[8] | 葛逸弘, 房付春, 吴补领. 长链非编码RNA在间充质干细胞多向分化过程中的调节作用[J]. 国际口腔医学杂志, 2018, 45(3): 267-271. |
[9] | 郝奕霖, 房付春, 吴补领. 微小RNA在人牙周膜来源细胞成骨分化中的作用[J]. 国际口腔医学杂志, 2018, 45(1): 46-49. |
[10] | 刘珍珍, 方蛟, 赵静辉, 邹净亭, 相星辰, 王佳, 周延民. 牙龈干细胞生物学潜能的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 55-58. |
[11] | 薛令法, 张岱尊, 肖文林, 于保军. 机械牵张力促进小鼠骨髓间充质干细胞的成骨向分化[J]. 国际口腔医学杂志, 2017, 44(6): 679-685. |
[12] | 张建康, 卫俊俊, 唐曌隆, 余云波, 敬伟. Wnt和Notch通路在老龄个体骨髓间充质干细胞成骨中的调控[J]. 国际口腔医学杂志, 2017, 44(4): 459-465. |
[13] | 刘润恒,刘于冬,陈卓凡. 微小RNA在骨分化过程中的作用机制[J]. 国际口腔医学杂志, 2017, 44(1): 108-113. |
[14] | 耿奉雪,潘亚萍. 微小RNA-203的生物学功能及其在口腔疾病中的作用[J]. 国际口腔医学杂志, 2016, 43(6): 685-689. |
[15] | 李龙,黄洪章. 微小RNA-205在肿瘤化学治疗耐药中的作用和机制[J]. 国际口腔医学杂志, 2016, 43(6): 734-738. |
|