国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (3): 346-350.doi: 10.7518/gjkq.2018.03.019

• 综述 • 上一篇    下一篇

磷酸钙支架-药物缓释体系在骨组织工程中的研究进展

张艺馨, 李磊   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院修复科 成都 610041
  • 收稿日期:2017-07-20 修回日期:2018-01-13 发布日期:2018-05-08
  • 通讯作者: 李磊,副教授,博士,Email:lilei@scu.edu.cn
  • 作者简介:张艺馨,硕士,Email:zyx_smiling@163.com
  • 基金资助:
    国家自然科学基金(81300857)

Development of calcium phosphate scaffolds as drug delivery system in bone tissue engineering

Zhang Yixin, Li Lei   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-07-20 Revised:2018-01-13 Published:2018-05-08
  • Supported by:
    This study was supported by National Natural Science Foundation of China (81300857).

摘要: 磷酸钙支架材料以羟磷灰石和磷酸三钙为代表,因具有良好的生物相容性及生物活性,可作为生长因子和药物的运输载体而受到密切关注。本文着重介绍了磷酸钙类支架材料的性能及其在药物运输和缓释中的研究进展,并总结了此类材料未来的发展趋势。

关键词: 骨组织工程, 磷酸钙, 支架, 药物缓释体系

Abstract: Calcium phosphates caffolds, especially hydroxyapatite and tricalcium phosphate, have recently attracted researchers’ attention for their use as drug delivery vehicledue to their excellent biocompatibility and bioactivity, which extends a new dimension to their applications. The development of calcium phosphate scaffolds prepared as drug delivery system in bone tissue engineering including its properties, release kinetics, and some of the current drug and growth factor delivery approaches were reviewed.

Key words: bone tissue engineering, calcium phosphates, scaffolds, drug delivery system

中图分类号: 

  • R783
[1] Li Y, Xiao Y, Liu C.The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering[J]. Chem Rev, 2017, 117(5):4376-4421.
[2] Oshiro JA, Sato MR, Scardueli CR, et al.Bioactive molecule-loaded drug delivery systems to optimize bone tissue repair[J]. Curr Protein Pept Sci, 2017, 18(8):850-863.
[3] Bose S, Tarafder S.Calcium phosphate ceramic sys-tems in growth factor and drug delivery for bone tissue engineering: a review[J]. Acta Biomaterialia, 2012, 8(4):1401-1421.
[4] Samavedi S, Whittington AR, Goldstein AS.Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell beha-vior[J]. Acta Biomater, 2013, 9(9):8037-8045.
[5] Denry I, Kuhn LT.Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering[J]. Dent Mater, 2016, 32(1):43-53.
[6] Verron E, Bouler JM, Guicheux J.Controlling the biological function of calcium phosphate bone sub-stitutes with drugs[J]. Acta Biomater, 2012, 8(10): 3541-3551.
[7] Sun H, Yang HL.Calcium phosphate scaffolds com-bined with bone morphogenetic proteins or mesen-chymal stem cells in bone tissue engineering[J]. Chin Med J, 2015, 128(8):1121-1127.
[8] Li J, Baker BA, Mou X, et al.Biopolymer/Calcium phosphate scaffolds for bone tissue engineering[J]. Adv Healthc Mater, 2014, 3(4):469-484.
[9] Zhang J, Liu W, Schnitzler V, et al.Calcium phos-phate cements for bone substitution: chemistry, handling and mechanical properties[J]. Acta Bio-mater, 2014, 10(3):1035-1049.
[10] Bose S, Suguira S, Bandyopadhyay A.Processing of controlled porosity ceramic structures via fused de-position[J]. Scripta Materialia, 1999, 41(9):1009-1014.
[11] Lin K, Wu C, Chang J.Advances in synthesis of cal-cium phosphate crystals with controlled size and shape[J]. Acta Biomater, 2014, 10(10):4071-4102.
[12] Tajbakhsh S, Hajiali F.A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 1): 897-912.
[13] Huang GS, Tseng CS, Linju Yen B, et al.Solid free- form-fabricated scaffolds designed to carry multi-cellular mesenchymal stem cell spheroids for cartilage regeneration[J]. Eur Cell Mater, 2013, 26:179-194.
[14] Shanjani Y, Hu Y, Toyserkani E, et al.Solid free-form fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies[J]. J Biomed Mater Res Part B Appl Biomater, 2013, 101(6):972-980.
[15] Kim TH, Yun YP, Park YE, et al.In vitro and in vivo evaluation of bone formation using solid freeform fabrication-based bone morphogenic protein-2 relea-sing PCL/PLGA scaffolds[J]. Biomed Mater, 2014, 9(2):025008.
[16] Sun W, Starly B, Darling A, et al.Computer-aided tissue engineering: application to biomimetic model-ling and design of tissue scaffolds[J]. Biotechnol Appl Biochem, 2004, 39(Pt 1):49-58.
[17] Butscher A, Bohner M, Hofmann S, et al.Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing[J]. Acta Biomater, 2011, 7(3):907-920.
[18] Will J, Melcher R, Treul C, et al.Porous ceramic bone scaffolds for vascularized bone tissue regenera-tion[J]. J Mater Sci Mater Med, 2008, 19(8):2781-2790.
[19] Karageorgiou V, Kaplan D.Porosity of 3D biomate-rial scaffolds and osteogenesis[J]. Biomaterials, 2005, 26(27):5474-5491.
[20] Zambonin G, Camerino C, Greco G, et al.Hydroxya-patite coated with heaptocyte growth factor (HGF) stimulates human osteoblasts in vitro[J]. J Bone Joint Surg Br, 2000, 82(3):457-460.
[21] Hossain M, Irwin R, Baumann MJ, et al.Hepatocyte growth factor (HGF) adsorption kinetics and enhance-ment of osteoblast differentiation on hydroxyapatite surfaces[J]. Biomaterials, 2005, 26(15):2595-2602.
[22] Koempel JA, Patt BS, O’Grady K, et al. The effect of recombinant human bone morphogenetic protein-2 on the integration of porous hydroxyapatite implants with bone[J]. J Biomed Mater Res, 1998, 41(3):359-363.
[23] Takahashi T, Tominaga T, Watabe N, et al.Use of porous hydroxyapatite graft containing recombinant human bone morphogenetic protein-2 for cervical fusion in a caprine model[J]. J Neurosurg, 1999, 90(2 Suppl): 224-230.
[24] Crouzier T, Sailhan F, Becquart P, et al.The perfor-mance of BMP-2 loaded TCP/HAP porous ceramics with a polyelectrolyte multilayer film coating[J]. Bio-materials, 2011, 32(30):7543-7554.
[25] Quinlan E, López-Noriega A, Thompson E, et al.Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering[J]. J Control Release, 2015, 198:71-79.
[26] Polak SJ, Levengood SK, Wheeler MB, et al.Analy-sis of the roles of microporosity and BMP-2 on mul-tiple measures of bone regeneration and healing in calcium phosphate scaffolds[J]. Acta Biomater, 2011, 7(4):1760-1771.
[27] 姜蔚然, 张晓, 刘云松, 等. 骨形态发生蛋白-2-磷酸钙共沉淀支架与人脂肪间充质干细胞构建新型组织工程化骨[J]. 北京大学学报(医学版), 2017, 49(1):6-15.
Jiang WR, Zhang X, Liu YS, et al.A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2[J]. J Peking Univ (Health Sci), 2017, 49(1):6-15.
[28] Roldán JC, Detsch R, Schaefer S, et al.Bone forma-tion and degradation of a highly porous biphasic cal-cium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model[J]. J Craniomaxillofac Surg, 2010, 38(6):423-430.
[29] Ossipov DA.Bisphosphonate-modified biomaterials for drug delivery and bone tissue engineering[J]. Expert Opin Drug Deliv, 2015, 12(9):1443-1458.
[30] Son JS, Kwon TY, Kim KH.Osteogenic evaluation of porous calcium phosphate granules with drug de-livery system using nanoparticle carriers[J]. J Nanosci Nanotechnol, 2015, 15(1):130-133.
[31] Ginebra MP, Canal C, Espanol M, et al.Calcium pho-sphate cements as drug delivery materials[J]. Adv Drug Deliv Rev, 2012, 64(12):1090-1110.
[32] Kundu B, Soundrapandian C, Nandi SK, et al.Deve-lopment of new localized drug delivery system based on ceftriaxone-sulbactam composite drug impregnated porous hydroxyapatite: a systematic approach for in vitro and in vivo animal trial[J]. Pharm Res, 2010, 27(8):1659-1676.
[33] Jun W, Lin L, Yurong C, et al.Recent advances of calcium phosphate nanoparticles for controlled drug delivery[J]. Mini Rev Med Chem, 2013, 13(10):1501-1507.
[34] Yoshida K, Bessho K, Fujimura K, et al.Enhancement by recombinant human bone morphogenetic protein-2 of bone formation by means of porous hydroxyapatite in mandibular bone defects[J]. J Dent Res, 1999, 78(9):1505-1510.
[35] Xue W, Bandyopadhyay A, Bose S.Polycaprolactone coated porous tricalcium phosphate scaffolds for con-trolled release of protein for tissue engineering[J]. J Biomed Mater Res Part B Appl Biomater, 2009, 91(2):831-838.
[36] Sadiasa A, Kim MS, Lee BT.Poly(lactide-co-glycolide acid)/biphasic calcium phosphate composite coating on a porous scaffold to deliver simvastatin for bone tissue engineering[J]. J Drug Target, 2013, 21(8):719-729.
[37] Takahashi T.Improved therapeutic efficacy in bone and joint disorders by targeted drug delivery to bone[J]. Yakugaku Zasshi, 2016, 136(11):1501-1508.
[1] 刘育豪,张陶. 形状记忆高分子材料在骨缺损修复再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 219-224.
[2] 邹俊东,刘定坤,杨楠,王谜,刘志辉. 生物活性玻璃/壳聚糖复合材料在生物医学领域的应用[J]. 国际口腔医学杂志, 2020, 47(1): 90-94.
[3] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[4] 李龙飚,汪成林,叶玲. 天然支架材料在牙髓组织工程再生中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 666-672.
[5] 易芳,王斯任,褚衍昊,卢燕勤. 骨组织工程支架材料修复牙槽嵴裂的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 603-610.
[6] 周洁, 王颖, 张雷, 吴婷婷, 周咏, 邹多宏. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018, 45(3): 280-285.
[7] 梁馨予, 石佳博, 陈文川, 朱智敏. 硅酸镁锂在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 340-345.
[8] 张佳, 柳忠豪. 锶在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 50-54.
[9] 黄紫华, 武诗语, 麦穗. 促牙本质再矿化的生物活性树脂研究进展[J]. 国际口腔医学杂志, 2017, 44(4): 471-476.
[10] 李燕玲, 王劲茗. 计算机辅助设计与制作钛支架在无牙颌患者种植固定修复中的应用现状[J]. 国际口腔医学杂志, 2017, 44(3): 344-349.
[11] 杨懋彬1 曾倩2. 再生牙髓病学——牙髓再生的新方向[J]. 国际口腔医学杂志, 2016, 43(5): 495-499.
[12] 李州,许庆安,. 干细胞和支架与牙髓再生及其血运重建[J]. 国际口腔医学杂志, 2016, 43(3): 298-302.
[13] 郑健茂 毛学理 凌均棨. 镁基支架及其在动物骨缺损修复中的应用[J]. 国际口腔医学杂志, 2015, 42(6): 720-723.
[14] 李蕾, 乔祥晨 崔彩云, 郭维华, 田卫东, . 光引发聚合改性明胶用于牙组织工程的可能性初探[J]. 国际口腔医学杂志, 2015, 42(3): 265-268.
[15] 郭天奇,周延民,赵静辉,储顺礼,孙千月,罗雯静,马珊珊. 富血小板血纤蛋白与其他生物材料联合用于牙周组织修复[J]. 国际口腔医学杂志, 2015, 42(2): 231-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 重型颌面部炎症死亡和康复病例的实验室检查指标比较[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 逄键梁. 两例外胚层发育不良儿童骨内植入种植体后牙槽骨生长情况[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨春惠. 耳颞神经在颞颌关节周围的分布[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 王昆润. 牙周炎加重期应选用何种抗生素[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[10] 严超然,李龙江. 肿瘤靶向药物载体系统的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .