国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (5): 523-527.doi: 10.7518/gjkq.2017.05.006

• 牙周专栏 • 上一篇    下一篇

表观遗传学及其调控与牙周病

刘双, 李纾   

  1. 山东大学口腔医院牙周科,山东省口腔组织再生重点实验室 济南 250012
  • 收稿日期:2016-11-23 修回日期:2017-05-26 出版日期:2017-09-01 发布日期:2017-09-01
  • 通讯作者: 李纾,教授,博士,Email:lishu@sdu.edu.cn
  • 作者简介:刘双,硕士,Email:1032642912@qq.com

The effect of epigenetics and its regulation on periodontal disease

Liu Shuang, Li Shu.   

  1. Dept. of Periodontics, Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
  • Received:2016-11-23 Revised:2017-05-26 Online:2017-09-01 Published:2017-09-01

摘要: 表观遗传学是指不涉及DNA序列改变,而是通过有丝分裂和减数分裂进行遗传的基因表达变化的遗传学分支学科,其调控机制主要包括DNA甲基化、组蛋白修饰、染色质重塑和非编码RNA调控等。牙周炎病因复杂,且被吸收、破坏的牙槽骨很难实现功能性再生。表观遗传学在导致炎症的发生及促进骨再生的过程中扮演着重要角色,从表观遗传学及其调控的角度来预防牙周病的发生,促进牙槽骨的功能性再生,将是未来重要的研究内容,具有重要的临床意义。

关键词: 表观遗传学, 牙周病, 牙槽骨再生

Abstract: Epigenetics is defined as not involved in the change of the DNA sequence, but through mitosis and meiosis of the genetic changes in the genetics of the field, and its regulatory mechanisms include DNA methylation, histone modification, chromatin remodeling and non-encoding RNA regulation. The pathogeny of periodontal disease is complex, and it is difficult to achieve functional regeneration of alveolar bone. Epigenetic plays an important role in the development of inflammation and the promotion of bone regeneration. It will be an important research field in the future and have important clinical significance to prevent the occurrence of periodontal disease and make the functional regeneration of alveolar bone possible from the perspective of the epigenetic and its regulation.

Key words: epigenetics, periodontics, alveolar bone regeneration

中图分类号: 

  • R781.4
[1] 金洁琪, 吴红崑. 肥胖与口腔健康关系的研究[J]. 华西口腔医学杂志, 2015, 33(4):428-430.
Jin JQ, Wu HK. Relation between obesity and oral health[J]. West Chin J Stomatol, 2015, 33(4):428- 430.
[2] Offenbacher S, Barros SP, Beck JD. Rethinking periodontal inflammation[J]. J Periodontol, 2008, 79 (8 Suppl):1577-1584.
[3] Perri R, Nares S, Zhang S, et al. MicroRNA modu-lation in obesity and periodontitis[J]. J Dent Res, 2012, 91(1):33-38.
[4] Zhang S, Barros SP, Niculescu MD, et al. Alteration of PTGS2 promoter methylation in chronic periodon-titis[J]. J Dent Res, 2010, 89(2):133-137.
[5] Feng P, Wang X, Casado PL, et al. Genome wide association scan for chronic periodontitis implicates novel locus[J]. BMC Oral Health, 2014, 14:84.
[6] Cencioni C, Spallotta F, Martelli F, et al. Oxidative stress and epigenetic regulation in ageing and age-related diseases[J]. Int J Mol Sci, 2013, 14(9):17643- 17663.
[7] Ohi T, Uehara Y, Takatsu M, et al. Hypermethylation of CpGs in the promoter of the COL1A1 gene in the aged periodontal ligament[J]. J Dent Res, 2006, 85 (3):245-250.
[8] 赵金璇, 王芳, 徐峥嵘, 等. 表观遗传调控pre-mRNA的选择性剪接[J]. 遗传, 2014, 36(3):248- 255.
Zhao JX, Wang F, Xu ZR, et al. The epigenetic effect on pre-mRNA alternative splicing[J]. Hereditas, 2014, 36(3):248-255.
[9] Kargul J, Laurent GJ. Bioenergetic dysfunction in disease[J]. Int J Biochem Cell Biol, 2013, 45(1):1.
[10] Schulz S, Immel UD, Just L, et al. Epigenetic charac-teristics in inflammatory candidate genes in aggressive periodontitis[J]. Hum Immunol, 2016, 77(1):71-75.
[11] 刘昕訸, 张彦洁, 罗茂财, 等. 固有免疫细胞及其模式识别受体与表观遗传学调控研究进展[J]. 生命科学, 2014, 26(8):846-851.
Liu XH, Zhang YJ, Luo MC, et al. Research progress in regulation of innate immune cells and pattern re-cognition receptors by epigenetics[J]. Chin Bulle Life Sci, 2014, 26(8):846-851.
[12] Andia DC, de Oliveira NF, Casarin RC, et al. DNA methylation status of the IL8 gene promoter in ag-gressive periodontitis[J]. J Periodontol, 2010, 81(9): 1336-1341.
[13] Kikuchi S, Yamada D, Fukami T, et al. Hyperme-thylation of the TSLC1/IGSF4 promoter is associated with tobacco smoking and a poor prognosis in pri-mary nonsmall cell lung carcinoma[J]. Cancer, 2006, 106(8):1751-1758.
[14] He Z, Wang X, Deng Y, et al. Epigenetic regulation of Thy-1 gene expression by histone modification is involved in lipopolysaccharide-induced lung fibro-blast proliferation[J]. J Cell Mol Med, 2013, 17(1): 160-167.
[15] Ogbomo H, Michaelis M, Kreuter J, et al. Histone deacetylase inhibitors suppress natural killer cell cytolytic activity[J]. FEBS Lett, 2007, 581(7):1317- 1322.
[16] Tang G. siRNA and miRNA: an insight into RISCs [J]. Trends Biochem Sci, 2005, 30(2):106-114.
[17] Wu CT, Morris JR. Genes, genetics, and epigenetics: a correspondence[J]. Science, 2001, 293(5532):1103- 1105.
[18] Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for microRNA genomics[J]. Nucleic Acids Res, 2008, 36(Database issue):D154-D158.
[19] Turner ML, Schnorfeil FM, Brocker T. MicroRNAs regulate dendritic cell differentiation and function[J]. J Immunol, 2011, 187(8):3911-3917.
[20] Leong JW, Sullivan RP, Fehniger TA. Natural killer cell regulation by microRNAs in health and disease [J]. J Biomed Biotechnol, 2012, 2012:632329.
[21] Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA lnc-DC controls human den-dritic cell differentiation[J]. Science, 2014, 344 (6181):310-313.
[22] de Faria Amormino SA, Arão TC, Saraiva AM, et al. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis[J]. Hum Immunol, 2013, 74(9):1231-1236.
[23] Xia M, Liu J, Wu X, et al. Histone methyltransferase Ash1l suppresses interleukin-6 production and in-flammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20[J]. Immunity, 2013, 39(3):470-481.
[24] Rapicavoli NA, Qu K, Zhang J, et al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics[J]. Elife, 2013, 2:e00762.
[25] Larsson L, Castilho RM, Giannobile WV. Epigene-tics and its role in periodontal diseases: a state-of-the-art review[J]. J Periodontol, 2015, 86(4):556- 568.
[26] Drury JL, Chung WO. DNA methylation differen-tially regulates cytokine secretion in gingival epi-thelia in response to bacterial challenges[J]. Pathog Dis, 2015, 73(2):1-6.
[27] Schoolmeesters A, Eklund T, Leake D, et al. Func-tional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells[J]. PLoS One, 2009, 4(5):e5605.
[28] Callis TE, Chen JF, Wang DZ. MicroRNAs in skeletal and cardiac muscle development[J]. DNA Cell Biol, 2007, 26(4):219-225.
[29] 陆细红, 邓敏, 贺洪辉, 等. miR-125b通过靶向抑制Smad4调控骨髓间充质干细胞成骨分化[J]. 中南大学学报(医学版), 2013, 38(4):341-346.
Lu XH, Deng M, He HH, et al. miR-125b regulates osteogenic differentiation of human bone marrow mesenchymal stem cells by targeting Smad4[J]. J Central South Univ(Med Sci), 2013, 38(4):341-346.
[30] Baglìo SR, Devescovi V, Granchi D, et al. Micro-RNA expression profiling of human bone marrow mesenchymal stem cells during osteogenic diffe-rentiation reveals Osterix regulation by miR-31[J]. Gene, 2013, 527(1):321-331.
[31] Matysiak M, Fortak-Michalska M, Szymanska B, et al. MicroRNA-146a negatively regulates the im-munoregulatory activity of bone marrow stem cells by targeting prostaglandin E 2 synthase-2[J]. J Im-munol, 2013, 190(10):5102-5109.
[32] Su X, Liao L, Shuai Y, et al. MiR-26a functions op-positely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway[J]. Cell Death Dis, 2015, 6(8):e1851.
[33] 王海鹏, 高杰, 张小平, 等. miR-30a-5P在人骨髓间充质干细胞向成骨细胞分化过程中的生物学功能及验证[J]. 中国医药导报, 2011, 8(16):23-26.
Wang HP, Gao J, Zhang XP, et al. Function expre-ssion and verification of human miR-30a-5p in the inducing hbmscs into osteoblasts[J]. Chin Med He-rald , 2011, 8(16):23-26.
[34] Grover V, Kapoor A, Malhotra R, et al. Epigenetics and periodontal disease: hope to tame the untameable [J]. Curr Gene Ther, 2014, 14(6):473-481.
[35] Barros SP, Offenbacher S. Modifiable risk factors in periodontal disease: epigenetic regulation of gene expression in the inflammatory response[J]. Perio-dontol 2000, 2014, 64(1):95-110.
[36] 周巍, 赵春晖, 梅陵宣. 骨保护素基因修饰联合细胞移植技术促进牙周组织再生的实验研究[J]. 华西口腔医学杂志, 2010, 28(3):324-329.
Zhou W, Zhao CH, Mei LX. Effect of the compound of poly lactic-co-glycolic acid and bone marrow stromal cells modified by osteoprotegerin gene on the periodontal regeneration in Beagle dog perio-dontal defects[J]. West Chin J Stomatol, 2010, 28(3): 324-329.
[37] Lod S, Johansson T, Abrahamsson KH, et al. The influence of epigenetics in relation to oral health[J]. Int J Dent Hyg, 2014, 12(1):48-54.
[1] 张琳琳,杜毅. 畸形舌侧沟的治疗进展[J]. 国际口腔医学杂志, 2020, 47(4): 458-462.
[2] 刘琳,周婕妤,吴亚菲,赵蕾. 益生菌生态调节在牙周病防治中的应用[J]. 国际口腔医学杂志, 2020, 47(2): 131-137.
[3] 程国平,丁一,郭淑娟. 静电纺丝纤维作为牙周药物传递系统的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 565-570.
[4] 胡竹林,赵诣,李茵. 口腔龈沟液生物标志物的检测分析现状及临床应用前景展望[J]. 国际口腔医学杂志, 2019, 46(3): 308-315.
[5] 郭淑娟, 刘倩, 丁一. 牙周病和植体周病国际新分类简介[J]. 国际口腔医学杂志, 2019, 46(2): 125-134.
[6] 闫凯娴,李纾. 非牙周病性龈病损[J]. 国际口腔医学杂志, 2019, 46(2): 177-185.
[7] 董正谋,刘锐,刘鲁川,温秀杰. 种子细胞在牙周组织再生治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 48-54.
[8] 叶畅畅, 赵蕾, 王冬青, 王晓丽, 王海燕, 游梦, 黄萍, 吴亚菲. 妊娠期牙周疾病的防治策略[J]. 国际口腔医学杂志, 2018, 45(5): 501-508.
[9] 李一涵, 潘兰兰. 牙周病与阿尔兹海默症的关系[J]. 国际口腔医学杂志, 2018, 45(3): 335-339.
[10] 关巍, 汪昌宁. 脱细胞异体真皮基质在牙周病学中的应用[J]. 国际口腔医学杂志, 2017, 44(6): 669-673.
[11] 苗棣, 吴亚菲. 齿垢密螺旋体糜蛋白酶样蛋白酶复合物及其致病作用[J]. 国际口腔医学杂志, 2017, 44(6): 674-678.
[12] 梁静, 王凯, 吴家媛. CD24在口腔医学中的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 608-613.
[13] 谢成佳, 葛少华. 牙骨质撕裂的诊治进展[J]. 国际口腔医学杂志, 2017, 44(3): 315-319.
[14] 吕娇 赵文峰. 牙周病非手术治疗的研究进展[J]. 国际口腔医学杂志, 2016, 43(5): 594-598.
[15] 李娜,曹卫彬. 牙周病修复治疗的研究进展[J]. 国际口腔医学杂志, 2015, 42(5): 564-567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 杨儒壮 孙宏晨 欧阳喈. 纳米级高分子支架材料在组织工程中的研究进展[J]. 国际口腔医学杂志, 2004, 31(02): 126 -128 .
[4] 李中杰 谢翠柳综述 孟玉坤审校. 贴面修复临床效果的相关因素研究[J]. 国际口腔医学杂志, 2013, 40(4): 489 -492 .
[5] 黄丽娟,李建,. 髁突位置与颞下颌关节盘移位关系的研究[J]. 国际口腔医学杂志, 2007, 34(02): 104 -106 .
[6] 薛明,葛久禹,程磊. 根管冲洗液对电子根测仪准确性的影响[J]. 国际口腔医学杂志, 2016, 43(1): 5 .
[7] 蒋贤军 胡德渝 肖强 涂蕊 董滢. 成都市部分6~12岁孤残儿童患龋状况及防治探讨[J]. 国际口腔医学杂志, 2013, 40(2): 152 -155 .
[8] 王昆润. 口腔印模表面用次氯酸钠溶液消毒的实验研究[J]. 国际口腔医学杂志, 1999, 26(02): .
[9] 张凤,魏素华. 嵌体适合性分析的实验方法[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 吴园 刘传霞综述 李晓英审校. 复发性阿弗他溃疡与饮食调理[J]. 国际口腔医学杂志, 2012, 39(6): 808 -810 .