Int J Stomatol ›› 2026, Vol. 53 ›› Issue (2): 257-265.doi: 10.7518/gjkq.2026210
• Reviews • Previous Articles
CLC Number:
| [1] | Lopes B, Sousa P, Alvites R, et al. Peripheral nerve injury treatments and advances: one health perspective[J]. Int J Mol Sci, 2022, 23(2): 918. |
| [2] | Luo LH, He Y, Jin L, et al. Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries[J]. Bioact Mater, 2021, 6(3): 638-654. |
| [3] | van Hoorick J, Tytgat L, Dobos A, et al. (Photo-) crosslinkable gelatin derivatives for biofabrication applications[J]. Acta Biomater, 2019, 97: 46-73. |
| [4] | Chen SY, Zhao YX, Yan XL, et al. PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury[J]. J Biomed Mater Res A, 2019, 107(6): 1273-1283. |
| [5] | Zhou PH, Xu PP, Guan JJ, et al. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration[J]. Colloids Surf B Biointerfaces, 2020, 194: 111214. |
| [6] | He WH, Zhang XX, Li XZ, et al. A decellularized spinal cord extracellular matrix-gel/GelMA hydrogel three-dimensional composite scaffold promotes recovery from spinal cord injury via synergism with human menstrual blood-derived stem cells[J]. J Mater Chem B, 2022, 10(30): 5753-5764. |
| [7] | Tan MH, Xu WZ, Yan G, et al. Oriented artificial ni-che provides physical-biochemical stimulations for rapid nerve regeneration[J]. Mater Today Bio, 2023, 22: 100736. |
| [8] | Xu HL, Gao ZH, Wang ZY, et al. Electrospun PCL nerve conduit filled with GelMA gel for CNTF and IGF-1 delivery in promoting sciatic nerve regeneration in rat[J]. ACS Biomater Sci Eng, 2023, 9(11): 6309-6321. |
| [9] | Dong Q, Yang XD, Liang X, et al. Composite hydrogel conduit incorporated with platelet-rich plasma improved the regenerative microenvironment for peripheral nerve repair[J]. ACS Appl Mater Interfaces, 2023, 15(20): 24120-24133. |
| [10] | Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs[J]. Sci Rep, 2020, 10(1): 14023. |
| [11] | Das S, Thimukonda Jegadeesan J, Basu B. Advancing peripheral nerve regeneration: 3D bioprinting of GelMA-based cell-laden electroactive bioinks for nerve conduits[J]. ACS Biomater Sci Eng, 2024, 10(3): 1620-1645. |
| [12] | Zhang LM, Zhang H, Wang HR, et al. Fabrication of multi-channel nerve guidance conduits contai-ning schwann cells based on multi-material 3D bioprinting[J]. 3D Print Addit Manuf, 2023, 10(5): 1046-1054. |
| [13] | Wu WB, Dong YC, Liu HF, et al. 3D printed elastic hydrogel conduits with 7, 8-dihydroxyflavone relea-se for peripheral nerve repair[J]. Mater Today Bio, 2023, 20: 100652. |
| [14] | Tao J, Zhang JM, Du T, et al. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair[J]. Acta Biomater, 2019, 90: 49-59. |
| [15] | Wu ZX, Xie S, Kang YF, et al. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells[J]. Mater Sci Eng C Mater Biol Appl, 2021, 129: 112393. |
| [16] | Hamid OA, Eltaher HM, Sottile V, et al. 3D bioprinting of a stem cell-laden, multi-material tubular composite: an approach for spinal cord repair[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111707. |
| [17] | Ning LQ, Zhu N, Mohabatpour F, et al. Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions[J]. J Mater Chem B, 2019, 7(29): 4538-4551. |
| [18] | Zhou H, Jing SL, Xiong W, et al. Metal-organic framework materials promote neural differentiation of dental pulp stem cells in spinal cord injury[J]. J Nanobiotechnology, 2023, 21(1): 316. |
| [19] | Wang QC, Ge L, Guo JL, et al. Acid neutralization by composite lysine nanoparticles for spinal cord injury recovery through mitigating mitochondrial dysfunction[J]. ACS Biomater Sci Eng, 2024, 10(7): 4480-4495. |
| [20] | Wang H, Tang Q, Lu Y, et al. Berberine-loaded MSC-derived sEVs encapsulated in injectable GelMA hydrogel for spinal cord injury repair[J]. Int J Pharm, 2023, 643: 123283. |
| [21] | Qi ZP, Pan S, Yang XY, et al. Injectable hydrogel loaded with CDs and FTY720 combined with neural stem cells for the treatment of spinal cord injury[J]. Int J Nanomedicine, 2024, 19: 4081-4101. |
| [22] | Tsai EC, Dalton PD, Shoichet MS, et al. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection[J]. Biomaterials, 2006, 27(3): 519-533. |
| [23] | Zhuang H, Bu SS, Hua L, et al. Gelatin-methacry-lamide gel loaded with microspheres to deliver GD-NF in bilayer collagen conduit promoting sciatic nerve growth[J]. Int J Nanomedicine, 2016, 11: 1383-1394. |
| [24] | Hu YN, Chen ZY, Wang HY, et al. Conductive nerve guidance conduits based on morpho butterfly wings for peripheral nerve repair[J]. ACS Nano, 2022, 16(2): 1868-1879. |
| [25] | Mendes AX, Caballero Aguilar L, do Nascimento AT, et al. Integrating graphene oxide-hydrogels and electrical stimulation for controlled neurotrophic factor encapsulation: a promising approach for efficient nerve tissue regeneration[J]. ACS Appl Bio Mater, 2024, 7(6): 4175-4192. |
| [26] | Cai YT, Huang Q, Wang PH, et al. Conductive hydrogel conduits with growth factor gradients for peripheral nerve repair in diabetics with non-suture ta-pe[J]. Adv Healthc Mater, 2022, 11(16): e2200755. |
| [27] | Wu W, Jia S, Xu H, et al. Supramolecular hydrogel microspheres of platelet-derived growth factor mimetic peptide promote recovery from spinal cord injury[J]. ACS Nano, 2023, 17(4): 3818-3837. |
| [28] | Heo DN, Lee SJ, Timsina R, et al. Development of 3D printable conductive hydrogel with crystallized PEDOT: PSS for neural tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2019, 99: 582-590. |
| [29] | Liu Y, Yu H, Yu P, et al. Gelatin methacryloyl hydrogel scaffold loaded with activated Schwann cells attenuates apoptosis and promotes functional reco-very following spinal cord injury[J]. Exp Ther Med, 2023, 25(4): 144. |
| [30] | Pepelanova I, Kruppa K, Scheper T, et al. Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting[J]. Bioengineering, 2018, 5(3): 55. |
| [31] | Zhao HB, Liu M, Zhang YJ, et al. Nanocomposite hydrogels for tissue engineering applications[J]. Nanoscale, 2020, 12(28): 14976-14995. |
| [32] | Zhang XW, Zhang H, Zhang Y, et al. 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration[J]. J Mater Chem B, 2023, 11(6): 1288-1301. |
| [33] | Park J, Jeon J, Kim B, et al. Electrically conductive hydrogel nerve guidance conduits for peripheral ner-ve regeneration[J]. Adv Funct Mater, 2020, 30(39): 2003759. |
| [34] | Zhao FY, Cheng J, Sun MY, et al. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing[J]. Biofabrication, 2020, 12(4): 045011. |
| [35] | Yu C, Ma XY, Zhu W, et al. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix[J]. Biomaterials, 2019, 194: 1-13. |
| [36] | Wang T, Han Y, Wu ZJ, et al. Tissue-specific hydrogels for three-dimensional printing and potential application in peripheral nerve regeneration[J]. Tissue Eng Part A, 2022, 28(3/4): 161-174. |
| [37] | Xu YW, Zhou J, Liu CC, et al. Understanding the role of tissue-specific decellularized spinal cord matrix hydrogel for neural stem/progenitor cell microenvironment reconstruction and spinal cord injury[J]. Biomaterials, 2021, 268: 120596. |
| [1] | Tian Li,Lijie Li. Research progress on scaffold-based prevascularization technique for dental pulp tissue [J]. Int J Stomatol, 2025, 52(5): 594-605. |
| [2] | Qihang Huang,Hang Wang,Yaozhong Wang,Dechao Li. Application of electrospun nanofibers in maxillofacial tissue repair [J]. Int J Stomatol, 2025, 52(4): 526-533. |
| [3] | Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746. |
| [4] | Wu Jiaxin,Cheng Xingqun,Wu Hongkun.. Clinical application and research progress on hyaluronic acid in the repair of papillary height loss [J]. Int J Stomatol, 2023, 50(3): 347-352. |
| [5] | Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496. |
| [6] | Shi Peilei,Yu Chenhao,Xie Xudong,Wu Yafei,Wang Jun. Research progress on the application of dental-derived mesenchymal stem cells in periodontal defect repair [J]. Int J Stomatol, 2021, 48(6): 690-695. |
| [7] | Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569. |
| [8] | Cao Chunling,Han Bing,Wang Xiaoyan. Research progress on hydrogels for pulp regeneration [J]. Int J Stomatol, 2021, 48(2): 192-197. |
| [9] | Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70. |
| [10] | Liu Yuhao,Zhang Tao. Research progress on shape memory polymers in bone defect repair and regeneration [J]. Int J Stomatol, 2020, 47(2): 219-224. |
| [11] | Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui. An overview of bioactive glasses/chitosan composites for biomedical applications [J]. Int J Stomatol, 2020, 47(1): 90-94. |
| [12] | Mei Hongxiang,Zhang Yidan,Zhang Chenghao,Liu Enyan,Chen Hao,Zhao Zhihe,Liao Wen. Effect of epigallocatechin-3-gallate on stem cell proliferation and osteogenic differentiation [J]. Int J Stomatol, 2019, 46(4): 431-436. |
| [13] | Zhengmou Dong,Rui Liu,Luchuan Liu,Xiujie Wen. Research progress on the seed cells in periodontal tissue regeneration [J]. Inter J Stomatol, 2019, 46(1): 48-54. |
| [14] | Longbiao Li,Chenglin Wang,Ling Ye. Research progress on natural scaffold in the regeneration of dental pulp tissue engineering [J]. Inter J Stomatol, 2018, 45(6): 666-672. |
| [15] | Fang Yi,Siren Wang,Yanhao Chu,Yanqin. Lu. Research progress on the repair of alveolar cleft with bone tissue engineering scaffolds [J]. Inter J Stomatol, 2018, 45(5): 603-610. |
|
||