Int J Stomatol ›› 2026, Vol. 53 ›› Issue (2): 257-265.doi: 10.7518/gjkq.2026210

• Reviews • Previous Articles    

Research progress on gelatin methacryloyl hydrogels for promoting neural tissue repair

Ziyan Lin1(),Laijun Xu2()   

  1. 1.Xiangya School of Stomatology, Central South University, Changsha 410008, China
    2.Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
  • Received:2024-09-24 Revised:2025-01-16 Online:2026-03-01 Published:2026-02-13
  • Contact: Laijun Xu E-mail:2998128917@qq.com;14211220120@fudan.edu.cn
  • Supported by:
    National Natural Science Foundation of China(82501110);Open Fund of Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction(GXKLOMRR2403)

Abstract:

Gelatin methacryloyl (GelMA) hydrogels are prominent biomaterials extensively studied for their applications in bone tissue engineering and skin defect repair. Their 3D architecture facilitates cell growth and differentiation, and they feature excellent biocompatibility. In recent years, the utilization of GelMA hydrogels and their composites in neural tissue repair has attracted increasing attention. However, a comprehensive review that synthesizes the current research landscape in this area is notably absent. Therefore, this paper aimed to elucidate recent advancements in GelMA composite hydrogels for neural tissue repair, providing novel insights and perspectives on neural tissue regeneration.

Key words: gelatin methacryloyl hydrogels, neural repair, synthetic neural guide conduit, tissue engineering

CLC Number: 

  • R318.08

TrendMD: 

Fig 1

Schematic diagram of the preparation method by template method"

Fig 2

Schematic diagram of 3D bioprinting technology"

Fig 3

Schematic diagram of in-situ injection molding technology"

Tab 1

Material properties of GelMA composite hydrogel materials loaded with bioactive factors"

材料制造方法研究阶段结果文献
GDNF/GelMA凝胶微球模板法体外/动物实验实现了GDNF的稳定持续释放,促进了SC的增殖,改善损伤处微环境[23]
GelMA-CNTF/IGF-1水凝胶模板法体外/动物实验增强SC附着和增殖并促进其分泌[8]
GelMA/SA-3/PRP-20神经导管模板法体外/动物实验GelMA/SA-3/PRP-20神经导管稳固释放多种生长因子,刺激RSC96增殖和迁移,并且促进轴突再生、髓鞘再生和血管生成[9]
基于Morpho蝴蝶翼的rGO/BDNF/GelMA神经导管模板法体外/动物实验材料具有良好的导电性能,一定的电刺激条件下能持续释放NT,有效促进神经和肌肉组织的轴突再生和功能再生[24]
GelMA/GO水凝胶模板法体外实验在一定的电刺激下,材料增强了对生长因子的摄取,促进了大鼠肾上腺嗜铬细胞瘤PC12细胞的分化[25]
载7,8-DHF的GelMA/SF-MA神经导管3D生物打印体外/动物实验GelMA/SF-MA支架可促进SC黏附、增殖和迁移,并释放7,8-DHF以促进PC12细胞的轴突伸长和髓鞘再生[13]
GelMA-sEVs-Ber可注射水凝胶原位注射成型体外/动物实验植入的水凝胶降低了大鼠局部炎症水平,减少了脊髓损伤的纤维范围,为SCI后的神经再生和轴突生长提供了有利条件[20]

Tab 2

Material properties of GelMA composite hydrogel materials loaded with stem cells"

材料制造方法研究阶段结果文献
载BMSC和NSC的GelMA水凝胶支架3D生物打印体外/动物实验材料释放BMSC激活Notch信号通路,促进NSC增殖分化为神经元,并减少星形胶质细胞的产生[5]
载EB的聚己内酯/GelMA水凝胶支架3D生物打印体外实验负载EB的聚己内酯/GelMA管状支架在视黄酸存在的情况下,可诱导EB分化为脊髓神经元[16]
载RSC96的藻酸盐-GelMA-BNC支架3D生物打印体外实验复合支架可以提供合适的微环境,促进RSC96细胞的增殖和黏附,促进ASCL1、POU3F3、NEUROG1、DLL1、NOTCH1和ERBB2基因的表达[15]
载活化SC的GelMA水凝胶3D生物打印体外/动物实验材料抑制p38 MAPK通路以减少细胞凋亡,GelMA/活化SC的治疗效果优于单一活化SC治疗[29]
载DPSC/bFGF的GelMA水凝胶—纤维素/大豆分离蛋白复合膜导管模板法体外/动物实验该导管由10% GelMA-bFGF和DPSC组成,包裹纤维素/大豆蛋白复合膜,可有效修复大鼠15 mm长的坐骨神经缺损[2]

Tab 3

Material properties of GelMA composite hydrogel materials combined with other materials"

材料制造方法研究阶段结果引用
rGO/GelMA水凝胶3D生物打印体外/动物实验rGO/GelMA支架具有良好的力学性能,可促进BMSC和SC的黏附,体外实验显示,材料有优异的成骨能力,体内实验显示,材料可促进成骨和神经发生[32]
模板法体外/动物实验材料可支持PC12神经细胞的生长和分化,且效果优于单一GelMA水凝胶材料,体内实验显示,材料可促进神经和肌肉组织的神经再生、髓鞘形成和功能再生[33]
Lys@HMSN/GelMA水凝胶光交联反应复合体外/动物实验Lys@HMSN/GelMA复合水凝胶可调节损伤部位酸性环境,恢复三羧酸循环和脂肪酸代谢,改善线粒体功能,促进SCI恢复[19]
FTY720-CDs@GelMA水凝胶光交联反应复合体外/动物实验FTY720-CDs@GelMA水凝胶可显著促进NSC增殖,同时促进神经元再生和突触形成[21]
dECM/GelMA水凝胶3D生物打印体外实验材料可促进神经突生长和SC迁移,并桥接神经缺损[36]
DSCG/GelMA复合水凝胶支架模板法体外/动物实验材料具有高润湿性和柔软的机械性能,可创造适合MenSCs黏附、增殖和分化的微环境,可促进轴突再生及运动功能恢复、抑制炎症和神经胶质瘢痕发生[6]
[1] Lopes B, Sousa P, Alvites R, et al. Peripheral nerve injury treatments and advances: one health perspective[J]. Int J Mol Sci, 2022, 23(2): 918.
[2] Luo LH, He Y, Jin L, et al. Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries[J]. Bioact Mater, 2021, 6(3): 638-654.
[3] van Hoorick J, Tytgat L, Dobos A, et al. (Photo-) crosslinkable gelatin derivatives for biofabrication applications[J]. Acta Biomater, 2019, 97: 46-73.
[4] Chen SY, Zhao YX, Yan XL, et al. PAM/GO/gel/SA composite hydrogel conduit with bioactivity for repairing peripheral nerve injury[J]. J Biomed Mater Res A, 2019, 107(6): 1273-1283.
[5] Zhou PH, Xu PP, Guan JJ, et al. Promoting 3D neuronal differentiation in hydrogel for spinal cord regeneration[J]. Colloids Surf B Biointerfaces, 2020, 194: 111214.
[6] He WH, Zhang XX, Li XZ, et al. A decellularized spinal cord extracellular matrix-gel/GelMA hydrogel three-dimensional composite scaffold promotes recovery from spinal cord injury via synergism with human menstrual blood-derived stem cells[J]. J Mater Chem B, 2022, 10(30): 5753-5764.
[7] Tan MH, Xu WZ, Yan G, et al. Oriented artificial ni-che provides physical-biochemical stimulations for rapid nerve regeneration[J]. Mater Today Bio, 2023, 22: 100736.
[8] Xu HL, Gao ZH, Wang ZY, et al. Electrospun PCL nerve conduit filled with GelMA gel for CNTF and IGF-1 delivery in promoting sciatic nerve regeneration in rat[J]. ACS Biomater Sci Eng, 2023, 9(11): 6309-6321.
[9] Dong Q, Yang XD, Liang X, et al. Composite hydrogel conduit incorporated with platelet-rich plasma improved the regenerative microenvironment for peripheral nerve repair[J]. ACS Appl Mater Interfaces, 2023, 15(20): 24120-24133.
[10] Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs[J]. Sci Rep, 2020, 10(1): 14023.
[11] Das S, Thimukonda Jegadeesan J, Basu B. Advancing peripheral nerve regeneration: 3D bioprinting of GelMA-based cell-laden electroactive bioinks for nerve conduits[J]. ACS Biomater Sci Eng, 2024, 10(3): 1620-1645.
[12] Zhang LM, Zhang H, Wang HR, et al. Fabrication of multi-channel nerve guidance conduits contai-ning schwann cells based on multi-material 3D bioprinting[J]. 3D Print Addit Manuf, 2023, 10(5): 1046-1054.
[13] Wu WB, Dong YC, Liu HF, et al. 3D printed elastic hydrogel conduits with 7, 8-dihydroxyflavone relea-se for peripheral nerve repair[J]. Mater Today Bio, 2023, 20: 100652.
[14] Tao J, Zhang JM, Du T, et al. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair[J]. Acta Biomater, 2019, 90: 49-59.
[15] Wu ZX, Xie S, Kang YF, et al. Biocompatibility evaluation of a 3D-bioprinted alginate-GelMA-bacteria nanocellulose (BNC) scaffold laden with oriented-growth RSC96 cells[J]. Mater Sci Eng C Mater Biol Appl, 2021, 129: 112393.
[16] Hamid OA, Eltaher HM, Sottile V, et al. 3D bioprinting of a stem cell-laden, multi-material tubular composite: an approach for spinal cord repair[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120: 111707.
[17] Ning LQ, Zhu N, Mohabatpour F, et al. Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions[J]. J Mater Chem B, 2019, 7(29): 4538-4551.
[18] Zhou H, Jing SL, Xiong W, et al. Metal-organic framework materials promote neural differentiation of dental pulp stem cells in spinal cord injury[J]. J Nanobiotechnology, 2023, 21(1): 316.
[19] Wang QC, Ge L, Guo JL, et al. Acid neutralization by composite lysine nanoparticles for spinal cord injury recovery through mitigating mitochondrial dysfunction[J]. ACS Biomater Sci Eng, 2024, 10(7): 4480-4495.
[20] Wang H, Tang Q, Lu Y, et al. Berberine-loaded MSC-derived sEVs encapsulated in injectable GelMA hydrogel for spinal cord injury repair[J]. Int J Pharm, 2023, 643: 123283.
[21] Qi ZP, Pan S, Yang XY, et al. Injectable hydrogel loaded with CDs and FTY720 combined with neural stem cells for the treatment of spinal cord injury[J]. Int J Nanomedicine, 2024, 19: 4081-4101.
[22] Tsai EC, Dalton PD, Shoichet MS, et al. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection[J]. Biomaterials, 2006, 27(3): 519-533.
[23] Zhuang H, Bu SS, Hua L, et al. Gelatin-methacry-lamide gel loaded with microspheres to deliver GD-NF in bilayer collagen conduit promoting sciatic nerve growth[J]. Int J Nanomedicine, 2016, 11: 1383-1394.
[24] Hu YN, Chen ZY, Wang HY, et al. Conductive nerve guidance conduits based on morpho butterfly wings for peripheral nerve repair[J]. ACS Nano, 2022, 16(2): 1868-1879.
[25] Mendes AX, Caballero Aguilar L, do Nascimento AT, et al. Integrating graphene oxide-hydrogels and electrical stimulation for controlled neurotrophic factor encapsulation: a promising approach for efficient nerve tissue regeneration[J]. ACS Appl Bio Mater, 2024, 7(6): 4175-4192.
[26] Cai YT, Huang Q, Wang PH, et al. Conductive hydrogel conduits with growth factor gradients for peripheral nerve repair in diabetics with non-suture ta-pe[J]. Adv Healthc Mater, 2022, 11(16): e2200755.
[27] Wu W, Jia S, Xu H, et al. Supramolecular hydrogel microspheres of platelet-derived growth factor mimetic peptide promote recovery from spinal cord injury[J]. ACS Nano, 2023, 17(4): 3818-3837.
[28] Heo DN, Lee SJ, Timsina R, et al. Development of 3D printable conductive hydrogel with crystallized PEDOT: PSS for neural tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2019, 99: 582-590.
[29] Liu Y, Yu H, Yu P, et al. Gelatin methacryloyl hydrogel scaffold loaded with activated Schwann cells attenuates apoptosis and promotes functional reco-very following spinal cord injury[J]. Exp Ther Med, 2023, 25(4): 144.
[30] Pepelanova I, Kruppa K, Scheper T, et al. Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting[J]. Bioengineering, 2018, 5(3): 55.
[31] Zhao HB, Liu M, Zhang YJ, et al. Nanocomposite hydrogels for tissue engineering applications[J]. Nanoscale, 2020, 12(28): 14976-14995.
[32] Zhang XW, Zhang H, Zhang Y, et al. 3D printed reduced graphene oxide-GelMA hybrid hydrogel scaffolds for potential neuralized bone regeneration[J]. J Mater Chem B, 2023, 11(6): 1288-1301.
[33] Park J, Jeon J, Kim B, et al. Electrically conductive hydrogel nerve guidance conduits for peripheral ner-ve regeneration[J]. Adv Funct Mater, 2020, 30(39): 2003759.
[34] Zhao FY, Cheng J, Sun MY, et al. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing[J]. Biofabrication, 2020, 12(4): 045011.
[35] Yu C, Ma XY, Zhu W, et al. Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix[J]. Biomaterials, 2019, 194: 1-13.
[36] Wang T, Han Y, Wu ZJ, et al. Tissue-specific hydrogels for three-dimensional printing and potential application in peripheral nerve regeneration[J]. Tissue Eng Part A, 2022, 28(3/4): 161-174.
[37] Xu YW, Zhou J, Liu CC, et al. Understanding the role of tissue-specific decellularized spinal cord matrix hydrogel for neural stem/progenitor cell microenvironment reconstruction and spinal cord injury[J]. Biomaterials, 2021, 268: 120596.
[1] Tian Li,Lijie Li. Research progress on scaffold-based prevascularization technique for dental pulp tissue [J]. Int J Stomatol, 2025, 52(5): 594-605.
[2] Qihang Huang,Hang Wang,Yaozhong Wang,Dechao Li. Application of electrospun nanofibers in maxillofacial tissue repair [J]. Int J Stomatol, 2025, 52(4): 526-533.
[3] Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746.
[4] Wu Jiaxin,Cheng Xingqun,Wu Hongkun.. Clinical application and research progress on hyaluronic acid in the repair of papillary height loss [J]. Int J Stomatol, 2023, 50(3): 347-352.
[5] Cai Chaoying,Chen Xuepeng,Hu Ji’an. Research progress on exosome composite scaffolds in oral tissue engineering [J]. Int J Stomatol, 2022, 49(4): 489-496.
[6] Shi Peilei,Yu Chenhao,Xie Xudong,Wu Yafei,Wang Jun. Research progress on the application of dental-derived mesenchymal stem cells in periodontal defect repair [J]. Int J Stomatol, 2021, 48(6): 690-695.
[7] Gong Jinglei,Huang Yanmei,Wang Jun. Research progress on multiphasic scaffold in periodontal regeneration [J]. Int J Stomatol, 2021, 48(5): 563-569.
[8] Cao Chunling,Han Bing,Wang Xiaoyan. Research progress on hydrogels for pulp regeneration [J]. Int J Stomatol, 2021, 48(2): 192-197.
[9] Li Peiyi,Zhang Xinchun. Research progress on the effects of microenvironment acid-base level in tissue-engineered bone regeneration [J]. Int J Stomatol, 2021, 48(1): 64-70.
[10] Liu Yuhao,Zhang Tao. Research progress on shape memory polymers in bone defect repair and regeneration [J]. Int J Stomatol, 2020, 47(2): 219-224.
[11] Zou Jundong,Liu Dingkun,Yang Nan,Wang Mi,Liu Zhihui. An overview of bioactive glasses/chitosan composites for biomedical applications [J]. Int J Stomatol, 2020, 47(1): 90-94.
[12] Mei Hongxiang,Zhang Yidan,Zhang Chenghao,Liu Enyan,Chen Hao,Zhao Zhihe,Liao Wen. Effect of epigallocatechin-3-gallate on stem cell proliferation and osteogenic differentiation [J]. Int J Stomatol, 2019, 46(4): 431-436.
[13] Zhengmou Dong,Rui Liu,Luchuan Liu,Xiujie Wen. Research progress on the seed cells in periodontal tissue regeneration [J]. Inter J Stomatol, 2019, 46(1): 48-54.
[14] Longbiao Li,Chenglin Wang,Ling Ye. Research progress on natural scaffold in the regeneration of dental pulp tissue engineering [J]. Inter J Stomatol, 2018, 45(6): 666-672.
[15] Fang Yi,Siren Wang,Yanhao Chu,Yanqin. Lu. Research progress on the repair of alveolar cleft with bone tissue engineering scaffolds [J]. Inter J Stomatol, 2018, 45(5): 603-610.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!