Int J Stomatol ›› 2025, Vol. 52 ›› Issue (1): 123-132.doi: 10.7518/gjkq.2025013

• Reviews • Previous Articles    

Smart responsive hydrogels and their application in controlled drug release

Qipei Luo(),Xinchun Zhang()   

  1. Dept. of Prosthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University & Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Received:2024-03-19 Revised:2024-09-15 Online:2025-01-01 Published:2025-01-11
  • Contact: Xinchun Zhang E-mail:luoqp3@mail2.sysu.edu.cn;zhxinch@mail.sysu.edu.cn
  • Supported by:
    Natural Science Foundation of Guangdong Province(2022A1515012485)

Abstract:

Hydrogels are polymeric materials with advantageous properties of facile functionalization and drug encapsulation, rendering them applicable in drug delivery. Compared with regular hydrogels, smart responsive hydrogels are superior drug delivery systems due to their ability to intelligently respond to stimuli and avoid burst drug release in the early stage. These hydrogels can effectively react to microenvironmental alterations in disease conditions or external stimuli, hence enabling precise and timely controlled drug release. In this work, the unique response mechanism of hydrogels responsive to pH, reactive oxygen species, chemical, temperature, magnetic, light and ultrasound and their innovative application in the treatment of various diseases are reviewed. The findings present the frontier progress in this field and point out the development direction of future research.

Key words: hydrogels, smart responsive hydrogels, drug delivery, controlled drug release

CLC Number: 

  • R452

TrendMD: 

Fig 1

The response schematic diagram of pH responsive hydrogels"

Fig 2

The response schematic diagram of ROS responsive hydrogels"

Fig 3

The response schematic diagram of chemical responsive hydrogels"

Fig 4

The response schematic diagram of thermo-responsive hydrogels"

Fig 5

The response schematic diagram of magnetic responsive hydrogels"

Fig 6

The response schematic diagram of photoresponsive hydrogels"

Fig 7

The response schematic diagram of ultrasound responsive hydrogels"

1 Zhao Y, Song SL, Ren XZ, et al. Supramolecular adhesive hydrogels for tissue engineering applications[J]. Chem Rev, 2022, 122(6): 5604-5640.
2 Dimatteo R, Darling NJ, Segura T. In situ forming injectable hydrogels for drug delivery and wound repair[J]. Adv Drug Deliv Rev, 2018, 127: 167-184.
3 Li FY, Lyu DY, Liu S, et al. DNA hydrogels and microgels for biosensing and biomedical applications[J]. Adv Mater, 2020, 32(3): e1806538.
4 Thambi T, Li Y, Lee DS. Injectable hydrogels for sustained release of therapeutic agents[J]. J Control Release, 2017, 267: 57-66.
5 Koetting MC, Peters JT, Steichen SD, et al. Stimulus-responsive hydrogels: theory, modern advances, and applications[J]. Mater Sci Eng R Rep, 2015, 93: 1-49.
6 Abdollahiyan P, Baradaran B, de la Guardia M, et al. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today[J]. J Control Release, 2020, 328: 514-531.
7 Li JY, Mooney DJ. Designing hydrogels for controlled drug delivery[J]. Nat Rev Mater, 2016, 1(12): 16071.
8 Zhuo SJ, Zhang F, Yu JY, et al. pH-sensitive biomaterials for drug delivery[J]. Molecules, 2020, 25(23): 5649.
9 Bazban-Shotorbani S, Hasani-Sadrabadi MM, Kar-khaneh A, et al. Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications[J]. J Control Release, 2017, 253: 46-63.
10 Tao W, Wang JQ, Parak WJ, et al. Nanobuffering of pH-responsive polymers: a known but sometimes overlooked phenomenon and its biological applications[J]. ACS Nano, 2019, 13(5): 4876-4882.
11 Thambi T, Jung JM, Lee DS. Recent strategies to develop pH-sensitive injectable hydrogels[J]. Biomater Sci, 2023, 11(6): 1948-1961.
12 Wang CG, Wang M, Xu TZ, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J]. Theranostics, 2019, 9(1): 65-76.
13 Liu J, Huang YR, Kumar A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy[J]. Biotechnol Adv, 2014, 32(4): 693-710.
14 Lee JB, Shin YM, Kim WS, et al. ROS-responsive biomaterial design for medical applications[J]. Adv Exp Med Biol, 2018, 1064: 237-251.
15 Yao YJ, Zhang HL, Wang ZY, et al. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration[J]. J Mater Chem B, 2019, 7(33): 5019-5037.
16 Zhao H, Huang J, Li Y, et al. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds[J]. Biomaterials, 2020, 258: 120286.
17 Mohanty AR, Ravikumar A, Peppas NA. Recent advances in glucose-responsive insulin delivery systems: novel hydrogels and future applications[J]. Regen Biomater, 2022, 9: rbac056.
18 Peng HF, Ning XY, Wei G, et al. The preparations of novel cellulose/phenylboronic acid composite intelligent bio-hydrogel and its glucose, pH-responsive behaviors[J]. Carbohydr Polym, 2018, 195: 349-355.
19 Sobczak M. Enzyme-responsive hydrogels as potential drug delivery systems-state of knowledge and future prospects[J]. Int J Mol Sci, 2022, 23(8): 4421.
20 Xiang YH, Xian SJ, Ollier RC, et al. Diboronate crosslinking: introducing glucose specificity in glucose-responsive dynamic-covalent networks[J]. J Control Release, 2022, 348: 601-611.
21 Yang JX, Zeng WN, Xu P, et al. Glucose-responsive multifunctional metal-organic drug-loaded hydrogel for diabetic wound healing[J]. Acta Biomater, 2022, 140: 206-218.
22 Fan CX, Yang W, Zhang LL, et al. Restoration of spinal cord biophysical microenvironment for enhancing tissue repair by injury-responsive smart hydrogel[J]. Biomaterials, 2022, 288: 121689.
23 Purcell BP, Lobb D, Charati MB, et al. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition[J]. Nat Mater, 2014, 13(6): 653-661.
24 Maitz MF, Freudenberg U, Tsurkan MV, et al. Bio-responsive polymer hydrogels homeostatically regulate blood coagulation[J]. Nat Commun, 2013, 4: 2168.
25 Lyu DY, Chen SS, Guo WW. Liposome crosslinked polyacrylamide/DNA hydrogel: a smart controlled-release system for small molecular payloads[J]. Small, 2018, 14(15): e1704039.
26 Chatterjee S, Hui PCL. Review of applications and future prospects of stimuli-responsive hydrogel based on thermo-responsive biopolymers in drug delivery systems[J]. Polymers (Basel), 2021, 13(13): 2086.
27 Loh XJ, Peh P, Liao SS, et al. Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers[J]. J Control Release, 2010, 143(2): 175-182.
28 Pardeshi S, Damiri F, Zehravi M, et al. Functional thermoresponsive hydrogel molecule to material design for biomedical applications[J]. Polymers, 2022, 14(15): 3126.
29 Wu HA, Song LN, Chen L, et al. Injectable magne-tic supramolecular hydrogel with magnetocaloric liquid-conformal property prevents post-operative recurrence in a breast cancer model[J]. Acta Biomater, 2018, 74: 302-311.
30 Zhi D, Yang T, O’Hagan J, et al. Photothermal therapy[J]. J Control Release, 2020, 325: 52-71.
31 Auerbach M, Chertow GM, Rosner M. Ferumoxytol for the treatment of iron deficiency anemia[J]. Expert Rev Hematol, 2018, 11(10): 829-834.
32 Fragal EH, Fragal VH, Silva EP, et al. Magnetic-responsive polysaccharide hydrogels as smart biomaterials: synthesis, properties, and biomedical applications[J]. Carbohydr Polym, 2022, 292: 119665.
33 Qin J, Asempah I, Laurent S, et al. Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs[J]. Adv Mater, 2009, 21(13): 1354-1357.
34 Rizzo F, Kehr NS. Recent advances in injectable hydrogels for controlled and local drug delivery[J]. Adv Healthc Mater, 2021, 10(1): e2001341.
35 Ji WH, Wu Q, Han XS, et al. Photosensitive hydrogels: from structure, mechanisms, design to bioapplications[J]. Sci China Life Sci, 2020, 63(12): 1813-1828.
36 Zhao WY, Li Y, Zhang X, et al. Photo-responsive supramolecular hyaluronic acid hydrogels for accele-rated wound healing[J]. J Control Release, 2020, 323: 24-35.
37 Li C, Iscen A, Palmer LC, et al. Light-driven expansion of spiropyran hydrogels[J]. J Am Chem Soc, 2020, 142(18): 8447-8453.
38 Xing YH, Zeng BH, Yang W. Light responsive hydrogels for controlled drug delivery[J]. Front Bioeng Biotechnol, 2022, 10: 1075670.
39 Zhao DL, Tang Q, Zhou Q, et al. A photo-degradable injectable self-healing hydrogel based on star poly(ethylene glycol)‑b-polypeptide as a potential pharmaceuticals delivery carrier[J]. Soft Matter, 2018, 14(36): 7420-7428.
40 Azagarsamy MA, Anseth KS. Wavelength-contro-lled photocleavage for the orthogonal and sequential release of multiple proteins[J]. Angew Chem Int Ed, 2013, 52(51): 13803-13807.
41 Li L, Scheiger JM, Levkin PA. Design and applications of photoresponsive hydrogels[J]. Adv Mater, 2019, 31(26): e1807333.
42 Maleki A, He JH, Bochani S, et al. Multifunctional photoactive hydrogels for wound healing acceleration[J]. ACS Nano, 2021, 15(12): 18895-18930.
43 Kim D, Choi E, Lee C, et al. Highly sensitive and selective visual detection of Cr(VI) ions based on etching of silver-coated gold nanorods[J]. Nano Converg, 2019, 6(1): 34.
44 Qiu M, Wang D, Liang WY, et al. Novel concept of the smart NIR-light-controlled drug release of black phosphorus nanostructure for cancer therapy[J]. Proc Natl Acad Sci U S A, 2018, 115(3): 501-506.
45 Athanassiadis AG, Ma ZC, Moreno-Gomez N, et al. Ultrasound-responsive systems as components for smart materials[J]. Chem Rev, 2022, 122(5): 5165-5208.
46 Yeingst TJ, Arrizabalaga JH, Hayes DJ. Ultrasound-induced drug release from stimuli-responsive hydrogels[J]. Gels, 2022, 8(9): 554.
47 Rapoport NY, Kennedy AM, Shea JE, et al. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles[J]. J Control Release, 2009, 138(3): 268-276.
48 Frohly J, Labouret S, Bruneel C, et al. Ultrasonic cavitation monitoring by acoustic noise power measurement[J]. J Acoust Soc Am, 2000, 108(5 Pt 1): 2012-2020.
49 Kaczmarek K, Hornowski T, Kubovčíková M, et al. Heating induced by therapeutic ultrasound in the presence of magnetic nanoparticles[J]. ACS Appl Mater Interfaces, 2018, 10(14): 11554-11564.
50 Huo SD, Liao ZH, Zhao PK, et al. Mechano-nanoswitches for ultrasound-controlled drug activation[J]. Adv Sci, 2022, 9(12): e2104696.
51 Liu HL, Yang HW, Hua MY, et al. Enhanced therapeutic agent delivery through magnetic resonance imaging-monitored focused ultrasound blood-brain barrier disruption for brain tumor treatment: an overview of the current preclinical status[J]. Neurosurg Focus, 2012, 32(1): E4.
52 Phenix CP, Togtema M, Pichardo S, et al. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery[J]. J Pharm Pharm Sci, 2014, 17(1): 136-153.
53 Slots J. Periodontitis: facts, fallacies and the future[J]. Periodontol 2000, 2017, 75(1): 7-23.
54 Wang YX, Li JX, Tang MM, et al. Smart stimuli-responsive hydrogels for drug delivery in periodontitis treatment[J]. Biomedecine Pharmacother, 2023, 162: 114688.
55 Zhang LL, Wang YL, Wang C, et al. Light-activable on-demand release of nano-antibiotic platforms for precise synergy of thermochemotherapy on perio-dontitis[J]. ACS Appl Mater Interfaces, 2020, 12(3): 3354-3362.
56 Gan ZQ, Xiao ZC, Zhang Z, et al. Stiffness-tuned and ROS-sensitive hydrogel incorporating complement C5a receptor antagonist modulates antibacte-rial activity of macrophages for periodontitis treatment[J]. Bioact Mater, 2023, 25: 347-359.
57 Guo J, Sun H, Lei W, et al. MMP-8-responsive polyethylene glycol hydrogel for intraoral drug delivery[J]. J Dent Res, 2019, 98(5): 564-571.
58 Liu SY, Wang YN, Ma BJ, et al. Gingipain-responsive thermosensitive hydrogel loaded with SDF-1 facilitates in situ periodontal tissue regeneration[J]. ACS Appl Mater Interfaces, 2021, 13(31): 36880-36893.
59 Bickel M, Cimasoni G. The pH of human crevicular fluid measured by a new microanalytical technique[J]. J Periodontal Res, 1985, 20(1): 35-40.
60 Zhao R, Yang RJ, Cooper PR, et al. Bone grafts and substitutes in dentistry: a review of current trends and developments[J]. Molecules, 2021, 26(10): 3007.
61 Li Z, Wang HX, Zhang KY, et al. Bisphosphonate-based hydrogel mediates biomimetic negative feedback regulation of osteoclastic activity to promote bone regeneration[J]. Bioact Mater, 2022, 13: 9-22.
62 Li DZ, Chen KW, Tang H, et al. A logic-based diagnostic and therapeutic hydrogel with multistimuli responsiveness to orchestrate diabetic bone regeneration[J]. Adv Mater, 2022, 34(11): e2108430.
63 Wan ZQ, Dong QY, Guo XD, et al. A dual-responsive polydopamine-modified hydroxybutyl chitosan hydrogel for sequential regulation of bone regeneration[J]. Carbohydr Polym, 2022, 297: 120027.
64 Zhao YW, Ran B, Xie X, et al. Developments on the smart hydrogel-based drug delivery system for oral tumor therapy[J]. Gels, 2022, 8(11): 741.
65 Liu H, Deng ZW, Li TH, et al. Fabrication, GSH-responsive drug release, and anticancer properties of thioctic acid-based intelligent hydrogels[J]. Colloids Surf B Biointerfaces, 2022, 217: 112703.
66 Zhang W, Jin X, Li H, et al. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release[J]. Carbohydr Polym, 2018, 186: 82-90.
67 Ghazi N, Saghravanian N, Taghi Shakeri M, et al. Evaluation of CD44 and TGF-B expression in oral carcinogenesis[J]. J Dent, 2021, 22(1): 33-40.
68 Reyes-Martínez JE, Ruiz-Pacheco JA, Flores-Valdéz MA, et al. Advanced hydrogels for treatment of diabetes[J]. J Tissue Eng Regen Med, 2019, 13(8): 1375-1393.
69 Stan D, Tanase C, Avram M, et al. Wound healing applications of creams and “smart” hydrogels[J]. Exp Dermatol, 2021, 30(9): 1218-1232.
70 Li JY, Feng YH, He YT, et al. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery[J]. Acta Biomater, 2022, 153: 308-319.
71 Chen SY, Matsumoto H, Moro-Oka Y, et al. Smart microneedle fabricated with silk fibroin combined semi-interpenetrating network hydrogel for glucose-responsive insulin delivery[J]. ACS Biomater Sci Eng, 2019, 5(11): 5781-5789.
72 Liu W, Wang XG, Zhou DY, et al. A Dioscorea opposita thunb polysaccharide-based dual-responsive hydrogel for insulin controlled release[J]. Int J Mol Sci, 2022, 23(16): 9081.
73 Lim JZM, Ng NSL, Thomas C. Prevention and treatment of diabetic foot ulcers[J]. J R Soc Med, 2017, 110(3): 104-109.
74 Liang YP, Li M, Yang YT, et al. pH/glucose dual responsive metformin release hydrogel dressings with adhesion and self-healing via dual-dynamic bonding for athletic diabetic foot wound healing[J]. ACS Nano, 2022, 16(2): 3194-3207.
75 Wang Y, Wu Y, Long LY, et al. Inflammation-responsive drug-loaded hydrogels with sequential hemostasis, antibacterial, and anti-inflammatory behavior for chronically infected diabetic wound treatment[J]. ACS Appl Mater Interfaces, 2021, 13(28): 33584-33599.
[1] Xingyue Wen, Junyu Zhao, Chongjun Zhao, Guixin Wang, Ruijie Huang. Research progress on chitosan in periodontal disease treatment [J]. Int J Stomatol, 2024, 51(4): 416-424.
[2] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[3] Chen Runzhi,Zhang Wentao,Chen Feng,Yang Fan. Modification of silk fibroin-based hydrogels and their applications for bone tissue engineering [J]. Int J Stomatol, 2023, 50(6): 739-746.
[4] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[5] Liang Yi,Pei Xibo,Wan Qianbing. Research progress on the biomedical applications of photosensitive hydrogels [J]. Int J Stomatol, 2022, 49(1): 12-18.
[6] Jiang Xiaoge,Wu Jiaxin,Pei Xibo. Research progress on metal-organic frameworks and their complex in biomedical field [J]. Int J Stomatol, 2019, 46(5): 552-557.
[7] Cheng Guoping,Ding Yi,Guo Shujuan. Progress in electrospun fibres as periodontal drug delivery systems [J]. Int J Stomatol, 2019, 46(5): 565-570.
[8] Zhang Yixin, Li Lei. Development of calcium phosphate scaffolds as drug delivery system in bone tissue engineering [J]. Inter J Stomatol, 2018, 45(3): 346-350.
[9] Wang Ting, Ge Shaohua.. Research progress on the application of graphene oxide in the field of biomedicine [J]. Inter J Stomatol, 2017, 44(5): 591-595.
[10] Yang Junjun1,2, Cheng Zhigang2, Song Guangtai1.. Application of the dental drug delivery system in stomatology [J]. Inter J Stomatol, 2014, 41(2): 236-239.
[11] JI Qiu-xia, DENG Jing. Effect of chitosan and its derivates in the field of periodontal treatment [J]. Inter J Stomatol, 2010, 37(5): 566-568,572.
[12] WU Xuan1, MA Wei- dong2, LIU Hong- chen1. Implantable drug delivery system of insulin [J]. Inter J Stomatol, 2008, 35(4): 430-430~432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!