Int J Stomatol ›› 2025, Vol. 52 ›› Issue (6): 771-782.doi: 10.7518/gjkq.2025063

• Original Articles • Previous Articles     Next Articles

Potential targets of compound Danshen dripping pill in the treatment of oral lichen planus based on network pharmacology and molecular docking

Yizhi Zhang(),Xueke Shi,Fanglong Wu,Hongmei Zhou()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-06-16 Revised:2025-02-18 Online:2025-11-01 Published:2025-10-23
  • Contact: Hongmei Zhou E-mail:zhangyizhi1@stu.scu.edu.cn;zhouhm@scu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(82071124);Research and Develop Program, West China Hospital of Stomatology Sichuan University(RD-03-202410)

Abstract:

Objective This study aimed to forecast the potential targets of compound Danshen dripping pill (CDDP) in treating oral lichen planus OLP (OLP) via network pharmacology and molecular docking. Methods The active compounds and targets of CDDP were searched in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The disease targets of OLP were obtained from multiple databases, such as DisGeNET. A drug-compound-target network was constructed by intersecting the targets to screen the key active components. A protein-protein interaction network was also built by intersecting the targets to select the key ones. Target intersection was also applied for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The molecular docking and visualization of key active components and targets were also performed. Results A total of 469 drug-disease intersecting targets were found. The key active components were bornyl acetate, dan-shexinkum D, and danshenol A, and the key targets were protein kinase B (AKT1), E1A binding protein p300 (EP300), and estrogen receptor 1 (ESR1). GO enrichment analysis indicated that the results of intersection targets included protein serine/threonine kinase activity, inflammatory response, signal transduction. KEGG enrichment analysis revealed various pathways such as cancer and AGE-RAGE signaling pathway in diabetic complications. Molecular docking showed that the results of AKT1, Harvey rat sarcoma virus (HRAS), and the three key active components were all ≤-5.0 kcal/mol. Conclusion In OLP treatment, the active components of CDDP may participate in immune function, reduce oxidative stress, inhibit inflammation by acting on multiple targets such as AKT1 and HRAS, and regulate pathways including cancer and AGE-RAGE signaling pathway.

Key words: oral lichen planus, compound Danshen dripping pill, network pharmacology, drug target, molecular docking

CLC Number: 

  • R78

TrendMD: 

Tab 1

Active ingredients of CDDP"

药物分子编码英文名称中文名称结构图口服生物利用度/%药物相似性
丹参*MOL007064przewalskin b(1R,4R,10R,13R)-13-羟基-5,5-二甲基-15-丙烷-2-基-11-氧酸四环[8.6.0.01,13.04,9]十六烷-8,15-二烯-12,14-二酮110.320.44
MOL007132

(2R)-3-(3,4-dihydroxyphenyl)-2-

[(Z)-3-(3,4-dihydroxyphenyl) acry-

loyl] oxy-propionic acid

(2R)-3-(3,4-二羟基苯基)-2-[(Z)-3-(3,4-二羟基苯基)丙烯酰基]氧代丙酸109.380.35
MOL007140

(Z)-3-[2-[(E)-2-(3,4-dihydroxyph-

nyl) vinyl]-3,4-dihydroxy-phenyl]

acrylic acid

(Z)-3-[2-[(E)-2-(3,4-二羟基苯烯)乙烯基]-3,4-二羟基苯基]丙烯酸88.540.26
MOL007150

(6S)-6-hydroxy-1-methyl-6-meth

lol-8,9-dihydro-7H-naphtho[8,7-g]

benzofuran-10,11-quinone

丹参二醇A75.390.46
MOL007058formyltanshinone醛基丹参酮73.440.42
MOL007120miltionone Ⅱ丹参酚醌Ⅱ71.030.44
MOL007105epidanshenspiroketallactone表丹参螺缩酮内脂68.270.31
MOL007155(6S)-6-(hydroxymethyl)-1,6-dimethyl-8,9-dihydro-7H-naphtho[8,7-g]b-enzofuran-10,11-dione(6S)-6-(羟甲基)-1,6-二甲基-8,9-二氢-7H-萘[8,7-g]苯并呋喃-10,11-二酮65.260.45
MOL007130prolithospermic acid原紫草酸64.370.31
MOL0070502?(4-hydroxy-3-methoxyphenyl)?5-(3-hydroxypropyl)?7-methoxy-3-be-nzofurancarboxaldehyde2-(4-羟基-3-甲氧基苯基)-5-(3-羟丙基)-7-甲氧基-1-苯并呋喃-3-甲醛62.780.40
三七MOL000098quercetin槲皮素46.430.28
MOL000449stigmasterol豆甾醇43.830.76
MOL002879diop邻苯二甲酸二异辛酯43.590.39
MOL001494Mandenol亚麻油酸乙酯42.000.19
MOL000358beta-sitosterolβ-谷甾醇36.910.75
MOL007475ginsenoside f2人参皂苷f236.430.25
MOL005344ginsenoside rh2人参皂苷Rh236.320.56
MOL001792DFV甘草素32.760.18
冰片MOL006862bronyl acetate乙酸龙脑酯59.300.51
MOL006865dipterocarpol龙脑香醇酮41.710.76
MOL006861asiatic acid积雪草酸41.380.71

Fig 1

Venn diagram of OLP related targets"

Fig 2

Venn diagram of OLP and drug intersection targets"

Fig 3

Drugs-active compounds-targets network"

Fig 4

PPI network diagram based on STRING database"

Fig 5

Key targets screening network diagram"

Fig 6

GO and KEGG enrichment analysis bubble chart"

Tab 2

Molecular docking binding energy of key active ingredients and key targets"

关键靶点关键活性成分
乙酸龙脑酯丹参新醌D丹参醇A
AKT1-5.59-8.2-7.58
EP300-4.61-7.750.89
ESR1-4.29-6.870.89
HRAS-6.60-8.57-6.68
PIK3CA-5.28+0.60-6.76
PIK3CB-4.48-6.27-6.31
PIK3CD-4.07-6.97-6.32
PIK3R1-2.43-0.530.89
PTPN11-4.32-7.27-6.48
STAT3-3.40+0.60-5.24

Fig 7

Molecular docking diagram of key active ingredients and key targets"

[1] 中华口腔医学会口腔黏膜病学专业委员会, 中华口腔医学会中西医结合专业委员会. 口腔扁平苔藓诊疗指南(修订版)[J].中华口腔医学杂志, 2022, 57(2): 115-121.
Society of Oral Medicine Chinese Stomatological Association, Society of Traditional Chinese Medicine Combined with Western Medicine Chinese Stomatological Association. Guideline for the diagnosis and treatment of oral lichen planus (revision) [J].Chin J Stomatol, 2022, 57(2): 115-121.
[2] Iocca O, Sollecito TP, Alawi F, et al. Potentially malignant disorders of the oral cavity and oral dysplasia: a systematic review and meta-analysis of malignant transformation rate by subtype[J]. Head Neck, 2020, 42(3): 539-555.
[3] Warnakulasuriya S, Kujan O, Aguirre-Urizar JM, et al. Oral potentially malignant disorders: a consensus report from an international seminar on nomenclature and classification, convened by the WHO Collaborating Centre for Oral Cancer[J]. Oral Dis, 2021, 27(8): 1862-1880.
[4] Ioannides D, Vakirlis E, Kemeny L, et al. European S1 guidelines on the management of lichen planus: a cooperation of the European Dermatology Forum with the European Academy of Dermatology and Venereology[J]. J Eur Acad Dermatol Venereol, 2020, 34(7): 1403-1414.
[5] 郭晨琪, 李俊辰, 申倩, 等. 口腔扁平苔藓的中西医治疗进展[J]. 中国中西医结合皮肤性病学杂志, 2022, 21(5): 468-471.
Guo CQ, Li JC, Shen Q, et al. Progress of oral lichen planus treated with traditional Chinese and western medicine[J]. Chin J Dermato Venerol Integ Trad W Med, 2022, 21(5): 468-471.
[6] 李倩. 复方丹参滴丸研究进展及临床应用[J].中华中医药杂志, 2018, 33(7): 2989-2991.
Li Q. Research progress and clinical application of Compound Danshen Dripping Pills[J]. China J Trad Chin Med Pharm, 2018, 33(7): 2989-2991.
[7] 黄华锋, 董震, 徐辉, 等. 复方丹参滴丸对口腔扁平苔藓患者血液流变学的影响[J]. 实用口腔医学杂志, 2002, 18(2): 140-142.
Huang HF, Dong Z, Xu H, et al. A priliminary observation of composite Danshen droplet pills on hemorheology of patients with oral lichen planus[J]. J Pract Stomatol, 2002, 18(2): 140-142.
[8] 邱峰, 惠建华, 华立. 复方丹参滴丸治疗口腔扁平苔藓患者血液流变学观察[J]. 中国血液流变学杂志, 2006, 16(4): 552, 682.
Qiu F, Hui JH, Hua L. Observation on blood rheology of patients with oral lichen planus treated with compound danshen dripping pills[J]. Chin J Hemorh, 2006, 16(4): 552, 682.
[9] 严嵚, 许建辉. 中西药合用治疗口腔黏膜扁平苔藓疗效观察[J]. 实用中医药杂志, 2017, 33(12): 1389-1390.
Yan Q, Xu JH. Observation on the therapeutic effect of combined Chinese and Western medicine in the treatment of oral lichen planus[J]. J Pract Trad Chin Med, 2017, 33(12): 1389-1390.
[10] 罗雪晴, 周文伟. 复方丹参滴丸治疗口腔扁平苔藓临床观察[J]. 实用中医药杂志, 2021, 37(11):1943-1944.
Luo XQ, Zhou WW. Clinical observation on treatment of oral lichen planus with compound Danshen dropping pills[J]. J Pract Trad Chin Med, 2021, 37(11): 1943-1944.
[11] 郑旭瑛, 谢逸瑞, 吴月蓉. 复方丹参滴丸在口腔扁平苔藓患者中的应用效果及对其血液流变学的影响分析[J]. 中国医药科学, 2020, 10(6): 32-34, 107.
Zheng XY, Xie YR, Wu YR. Analysis on application effects of compound salvia pellet in patients with oral lichen planus and its effect on hemorheology[J]. China Med Pharm, 2020, 10(6): 32-34, 107.
[12] 王立臣, 汤文兵, 陈珍, 等. 糖皮质激素联合复方丹参滴丸治疗口腔扁平苔藓效果观察[J]. 现代中西医结合杂志, 2018, 27(36): 4058-4061.
Wang LC, Tang WB, Chen Z, et al. Observation on the effect of glucocorticoid combined with compound Danshen dripping pills in the treatment of oral lichen planus[J]. Modern J Integr Trad Chin West Med, 2018, 27(36): 4058-4061.
[13] 周红梅, 周刚, 周威, 等. 口腔黏膜病药物治疗精解[M]. 北京: 人民卫生出版社, 2010: 121-127.
Zhou HM, Zhou G, Zhou W, et al. Comprehensive pharmacotherapy for oral mucosal diseases[M]. Beijing: People’s Medical Publishing House, 2010: 121-127.
[14] Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula[J]. J Ethnopharmacol, 2023, 309: 116306.
[15] Sahu D, Rathor LS, Dwivedi SD, et al. A review on molecular docking as an interpretative tool for molecular targets in disease management[J]. Assay Drug Dev Technol, 2024, 22(1): 40-50.
[16] Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6:13.
[17] Kim S, Chen J, Cheng T, et al. PubChem 2023 update[J]. Nucleic Acids Res, 2023, 51(D1): D1373-D1380.
[18] Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Res, 2019, 47(W1): W357-W364.
[19] ConsortiumUniProt. UniProt: the Universal Protein Knowledgebase in 2023[J]. Nucleic Acids Res, 2023, 51(D1): D523-D531.
[20] Sayers EW, Beck J, Bolton EE, et al. Database resources of the National Center for Biotechnology Information[J]. Nucleic Acids Res, 2024, 52(D1): D33-D43.
[21] Hamosh A, Scott AF, Amberger JS, et al. Online Mendelian Inheritance in Man (OMIM), a know-ledgebase of human genes and genetic disorders[J]. Nucleic Acids Res, 2005, 33(): D514-D517.
[22] Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, et al. The DisGeNET knowledge platform for disease genomics: 2019 update[J]. Nucleic Acids Res, 2020, 48(D1): D845-D855.
[23] Davis AP, Wiegers TC, Johnson RJ, et al. Comparative Toxicogenomics Database (CTD): update 2023[J]. Nucleic Acids Res, 2023, 51(D1): D1257-D1262.
[24] Zhou Y, Zhang Y, Zhao D, et al. TTD: Therapeutic Target Database describing target druggability information[J]. Nucleic Acids Res, 2024, 52(D1): D1465-D1477.
[25] Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(D1): D1074-D1082.
[26] Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33.
[27] Tang D, Chen M, Huang X, et al. SRplot: a free online platform for data visualization and graphing[J]. PLoS One, 2023, 18(11): e0294236.
[28] Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest[J]. Nucleic Acids Res, 2023, 51(D1): D638-D646.
[29] Sherman BT, Hao M, Qiu J, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update)[J]. Nucleic Acids Res, 2022, 50(W1): W216-W221.
[30] 王后赏, 杨津, 周红梅. 基于网络药理学和分子对接技术预测泼尼松治疗口腔扁平苔藓的潜在靶点和分子机制[J]. 口腔医学研究, 2022, 38(8): 773-778.
Wang HS, Yang J, Zhou HM. Prediction of potential targets and molecular mechanisms of prednisone for oral lichen planus based on network pharmacology and molecular docking[J]. J Oral Sci Res, 2022, 38(8): 773-778.
[31] Keerthika R, Kamboj M, Girdhar A, et al. An exotic pathogenetic mechanism of angiogenesis in oral lichen planus-a systematic review[J]. J Oral Pathol Med, 2023, 52(9): 803-810.
[32] Zhao ZJ, Sun YL, Ruan XF. Bornyl acetate: a promi-sing agent in phytomedicine for inflammation and immune modulation[J]. Phytomedicine, 2023, 114: 154781.
[33] El-Howati A, Thornhill MH, Colley HE, et al. Immune mechanisms in oral lichen planus[J]. Oral Dis, 2023, 29(4): 1400-1415.
[34] Li B, Wu YR, Li L, et al. A novel based-network strategy to identify phytochemicals from radix sal-viae miltiorrhizae (Danshen) for treating Alzheimer’s disease[J]. Molecules, 2022, 27(14): 4463.
[35] Li W, Ling Z, Wang J, et al. ASCT2-mediated glutamine uptake promotes Th1 differentiation via ROS-EGR1-PAC1 pathway in oral lichen planus[J]. Biochem Pharmacol, 2023, 216: 115767.
[36] Zhao W, Feng H, Guo S, et al. Danshenol A inhibits TNF-α-induced expression of intercellular adhesion molecule-1 (ICAM-1) mediated by NOX4 in endothelial cells[J]. Sci Rep, 2017, 7(1): 12953.
[37] De Porras-Carrique T, Ramos-García P, González-Moles MÁ. Hypertension in oral lichen planus: a systematic review and meta-analysis[J]. Oral Dis, 2024, 30(4): 1793-1805.
[38] Xiao X, Song Z, Liu S. Potential implication of serum lipid levels as predictive indicators for monito-ring oral lichen planus[J]. J Dent Sci, 2024, 19(2): 1307-1311.
[39] Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1): 263.
[40] Jangde N, Ray R, Rai V. RAGE and its ligands: from pathogenesis to therapeutics[J]. Crit Rev Biochem Mol Biol, 2020, 55(6): 555-575.
[41] Ma RJ, Tan YQ, Zhou G. Aberrant IGF1-PI3K/AKT/MTOR signaling pathway regulates the local immunity of oral lichen planus[J]. Immunobiology, 2019, 224(3): 455-461.
[42] Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from me-chanism to clinical studies[J]. Signal Transduct Target Ther, 2023, 8(1): 455.
[1] Li Ran,Hu Yue,Zhang Ning,Gao Ruifang,Wang Xiangyu,Ge Xuejun. The correlation study between single nucleotide polymorphisms of Toll-like receptor and interleukin-17 and oral lichen planus [J]. Int J Stomatol, 2024, 51(1): 45-51.
[2] Wang Sujie,Tan Qin,Wei Yuan,Wang Jie,Fan Jie,Yue Erli.. Correlation analysis of serum angiopoietin-2 level with forkhead/winged helix transcription factor p3 regulatory T cells and disease activity in patients with oral lichen planus [J]. Int J Stomatol, 2023, 50(6): 674-678.
[3] He Jing,Hu Mingjia,Xiao Ning,Li Jia,Sun Wanxin,Ling Lü,Liu Fan. Investigation on the degree of psychological distress and its influencing factors in patients with oral lichen planus [J]. Int J Stomatol, 2023, 50(3): 308-313.
[4] Zhang Shenyi,Wang Xiangjian,Shi Liran,Shi Jiahong,Wang Yuhong,Zhou Hongmei. Oral beta-carotene in the treatment of non-erosive oral lichen planus: a randomized controlled trial [J]. Int J Stomatol, 2022, 49(6): 633-640.
[5] Chen Siting,Zhong Xiong,Meng Wenxia.. Research progress on Nod-like receptor protein 3 inflammasome in oral mucosal diseases [J]. Int J Stomatol, 2022, 49(4): 471-475.
[6] Liu Siyu,Li Xin,Xu Xiaoyu,Sun Yinyin,Pan Yingxiao,Wang Sainan,Lu Shulai. Research advances in the relationship between oral lichen planus and cardiovascular diseases [J]. Int J Stomatol, 2021, 48(2): 141-146.
[7] Feng Lu,Meng Wenxia. Research progress on the problems of dental implant treatment in patients with common oral mucosal disease [J]. Int J Stomatol, 2021, 48(2): 147-155.
[8] Yuan Zhenying,Guan Cuiqiang,Nan Xinrong. Research progress on DNA methylation and oral disease [J]. Int J Stomatol, 2019, 46(4): 437-441.
[9] Shuaihua Qin,Xinming Li,Wenlu Li. Evaluation and correlation analysis of quality of life and coping strategies in patients with symptomatic oral lichen planus [J]. Int J Stomatol, 2019, 46(3): 282-286.
[10] Zhou Yi, Sun Xiurong, Liu Xueli, Yan Shixia. Effect of psychological intervention on the treatment of oral lichen planus [J]. Inter J Stomatol, 2016, 43(1): 22-.
[11] Wang Yuhong, Wu Zhongting, Zhou Hongmei.. Different response to treatment in the different sites of oral lichen planus: a case report [J]. Inter J Stomatol, 2015, 42(4): 430-431.
[12] Wang Xiaxia, Sun Hongying. Hypoxia-inducible factor-1α and oral lichen planus [J]. Inter J Stomatol, 2015, 42(3): 318-322.
[13] Liu Jiajia, Wu Yuanqin, Zeng Xin, Zhou Yu.. Function of microRNAs in oral lichen planus [J]. Inter J Stomatol, 2015, 42(1): 48-53.
[14] Zhou Hongmei, Liu Chuanxia.. Therapy ideas for oral lichen planus of different variants [J]. Inter J Stomatol, 2012, 39(5): 561-564.
[15] Li Chunhui, Nie Minhai.. Research progress on oral lichen planus associated mental factors [J]. Inter J Stomatol, 2012, 39(4): 530-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!