Int J Stomatol ›› 2025, Vol. 52 ›› Issue (6): 722-729.doi: 10.7518/gjkq.2025092

• Cariology and Endodontics • Previous Articles     Next Articles

Research progress of acid-base resistant zone for dental hard tissue bonding interface

Ruizhen Chen(),Xing Jiang,Jiyuan Shen,Ling Lin,Zhiqiang Zheng,Jie Lin()   

  1. Dept. of VIP Dental Service, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
  • Received:2024-08-16 Revised:2024-10-04 Online:2025-11-01 Published:2025-10-23
  • Contact: Jie Lin E-mail:crzzwddka@163.com;linjie.dds@gmail.com
  • Supported by:
    Natural Science Foundation of Fujian Province(2023J01701)

Abstract:

Observation by scanning electron microscopy confirmed the existence of an acid-base resistant zone (ABRZ) beneath the hybrid layer at the dental bonding interface. The formation of this zone is related to the chemical reaction between acidic functional monomers and hydroxyapatite in dentin. Unlike the traditional hybrid layer, ABRZ is characterized by resin-encapsulated partially demineralized hydroxyapatite. This formation enhances the resistance of the bond interface to acid-base degradation and long-term bonding durability. Recent studies suggest that ABRZ forms more readily in self-etch adhesive systems. The structure of this zone is closely related to the chemical composition of the adhesive. In this review, the microstructure, influencing factors, and formation mechanism of ABRZ are summarized to provide insights for clinical and scientific research on dental bonding.

Key words: dental adhesion, acid-base resistant zone, dentin, enamel, functional monomer, self-etching adhesive system

CLC Number: 

  • R781.05

TrendMD: 

Fig 1

Schematic of the typical ABRZ microstructure in dentin (SEM)"

Tab 1

Advantages and disadvantages of ABRZ in different adhesive systems"

粘接系统优点缺点
酸蚀-冲洗系统通过磷酸酸蚀剂预酸蚀牙釉质,增强单体渗透,促进ABRZ形成[28]用于牙本质时无法形成ABRZ[30];临床操作难度较高,可能导致邻近牙本质过度脱矿[15]
一步法自酸蚀形成薄层ABRZ[30];简化操作流程亲水性和疏水性单体的影响可降低粘接耐久性和ABRZ的形成[32];在ABRZ下方形成漏斗状缺损[30]
两步法自酸蚀形成较厚的ABRZ[10];Clearfil SE Bond作为金标准,提高粘接界面的耐酸性[11]操作流程相对复杂
实验性释氟粘接系统增加ABRZ厚度,创造高质量的ARBZ,并有效增强粘接耐久性[11];促进牙体硬组织的矿化,提高牙体的抗酸蚀能力[22]ABRZ的厚度和粘接强度受氟离子浓度的影响,需要精确控制氟的释放量[34];牙体基质的酸抵抗性增加可能会降低自酸蚀粘接系统的效果[32]
实验性含钙底涂剂增加ABRZ厚度,增加粘接界面的耐酸性,提高粘接界面耐久性和稳定性[21]需要与其他粘接剂或修复材料配合使用,增加了治疗的复杂性[21];降低早期粘接强度,特别是当与氟化物粘接剂结合使用时[21];仍需更多的临床研究来验证其长期效果和安全性

Fig 2

Morphological differences of dentin ABRZ among different adhesive systems"

[1] van Meerbeek B, Yoshihara K, van Landuyt K, et al. From buonocore’s pioneering acid-etch technique to self-adhering restoratives. A status perspective of rapidly advancing dental adhesive technology[J]. J Adhes Dent, 2020, 22(1): 7-34.
[2] Tsuchiya S, Nikaido T, Sonoda H, et al. Ultrastructure of the dentin-adhesive interface after acid-base challenge[J]. J Adhes Dent, 2004, 6(3): 183-190.
[3] Yoshihara K, Yoshida Y, Nagaoka N, et al. Nano-controlled molecular interaction at adhesive interfa-ces for hard tissue reconstruction[J]. Acta Biomater, 2010, 6(9): 3573-3582.
[4] Yoshihara K, Yoshida Y, Hayakawa S, et al. Nanolayering of phosphoric acid ester monomer on ena-mel and dentin[J]. Acta Biomater, 2011, 7(8): 3187-3195.
[5] Yoshida Y, Van Meerbeek B, Nakayama Y, et al. Adhesion to and decalcification of hydroxyapatite by carboxylic acids[J]. J Dent Res, 2001, 80(6): 1565-1569.
[6] Yoshioka M, Yoshida Y, Inoue S, et al. Adhesion/decalcification mechanisms of acid interactions with human hard tissues[J]. J Biomed Mater Res, 2002, 59(1): 56-62.
[7] Inoue G, Tsuchiya S, Nikaido T, et al. Morphological and mechanical characterization of the acid-base resistant zone at the adhesive-dentin interface of intact and caries-affected dentin[J]. Oper Dent, 2006, 31(4): 466-472.
[8] Guan R, Takagaki T, Matsui N, et al. Dentin bon-ding performance using Weibull statistics and eva-luation of acid-base resistant zone formation of recen-tly introduced adhesives[J]. Dent Mater J, 2016, 35(4): 684-693.
[9] Van Landuyt KL, Yoshida Y, Hirata I, et al. Influen-ce of the chemical structure of functional monomers on their adhesive performance[J]. J Dent Res, 2008, 87(8): 757-761.
[10] Tichy A, Hosaka K, Yang Y, et al. Can a new HEMA-free two-step self-etch adhesive improve dentin bonding durability and marginal adaptation[J]. J Adhes Dent, 2021, 23(6): 505-512.
[11] Kakiuchi Y, Takagaki T, Ikeda M, et al. Evaluation of MDP and NaF in two-step self-etch adhesives on enamel microshear bond strength and morphology of the adhesive-enamel interface[J]. J Adhes Dent, 2018, 20(6): 527-534.
[12] Carrilho E, Cardoso M, Marques Ferreira M, et al. 10-MDP based dental adhesives: adhesive interface characterization and adhesive stability-a systematic review[J]. Materials, 2019, 12(5): 790.
[13] Nurrohman H, Nikaido T, Takagaki T, et al. Apatite crystal protection against acid-attack beneath resin-dentin interface with four adhesives: TEM and crystallography evidence[J]. Dent Mater, 2012, 28(7): e89-e98.
[14] Yoshida Y, Nagakane K, Fukuda R, et al. Comparative study on adhesive performance of functional monomers[J]. J Dent Res, 2004, 83(6): 454-458.
[15] Waidyasekera K, Nikaido T, Weerasinghe DS, et al. Reinforcement of dentin in self-etch adhesive technology: a new concept[J]. J Dent, 2009, 37(8): 604-609.
[16] Nikaido T, Nurrohman H, Takagaki T, et al. Nanolea-kage in hybrid layer and acid-base resistant zone at the adhesive/dentin interface[J]. Microsc Microanal, 2015, 21(5): 1271-1277.
[17] Nikaido T, Inoue G, Takagaki T, et al. New strategy to create “Super Dentin” using adhesive technology: reinforcement of adhesive-dentin interface and protection of tooth structures[J]. Jpn Dent Sci Rev, 2011, 47(1): 31-42.
[18] Matsui N, Takagaki T, Sadr A, et al. The role of MDP in a bonding resin of a two-step self-etching adhesive system[J]. Dent Mater J, 2015, 34(2): 227-233.
[19] Vicheva M, Sato T, Takagaki T, et al. Effect of repair systems on dentin bonding performance[J]. Dent Mater J, 2021, 40(4): 903-910.
[20] Ko AK, Matsui N, Nakamoto A, et al. Effect of silver diammine fluoride application on dentin bon-ding performance[J]. Dent Mater J, 2020, 39(3): 407-414.
[21] Ochiai Y, Inoue G, Nikaido T, et al. Evaluation of experimental calcium-containing primer in adhesive system on micro-tensile bond strength and acid resistance[J]. Dent Mater J, 2019, 38(4): 565-572.
[22] Nikaido T, Takagaki T, Sato T, et al. Fluoride-relea-sing self-etch adhesives create thick ABRZ at the interface[J]. Biomed Res Int, 2021, 2021: 9731280.
[23] Aung SSMP, Takagaki T, Ko AK, et al. Adhesion durability of dual-cure resin cements and acid-base resistant zone formation on human dentin[J]. Dent Mater, 2019, 35(7): 945-952.
[24] Giannini M, Makishi P, Ayres AP, et al. Self-etch adhesive systems: a literature review[J]. Braz Dent J, 2015, 26(1): 3-10.
[25] Yang Y, Inoue G, Hosaka K, et al. The effect of a deproteinizing pretreatment on the bonding performance and acid resistance of a two-step self-etch adhesive on eroded dentin[J]. Oper Dent, 2024, 49(1): 65-75.
[26] Li N, Nikaido T, Takagaki T, et al. The role of functional monomers in bonding to enamel: acid-base resistant zone and bonding performance[J]. J Dent, 2010, 38(9): 722-730.
[27] Kumagai RY, Takagaki T, Sato T, et al. Resin cement/enamel interface: a morphological evaluation of the acid-base resistant zone, enamel etching pattern, and effect of thermocycling on the microshear bond strength[J]. J Adhes Dent, 2023, 25: 71-78.
[28] Sato T, Takagaki T, Ikeda M, et al. Effects of selective phosphoric acid etching on enamel using “no-wait” self-etching adhesives[J]. J Adhes Dent, 2018, 20(5): 407-415.
[29] Sato A, Sato T, Ikeda M, et al. Influence of different tooth etchants on bur-cut and uncut enamel[J]. Dent Mater J, 2023, 42(3): 311-318.
[30] Sato T, Takagaki T, Baba YT, et al. Effects of diffe-rent tooth conditioners on the bonding of universal self-etching adhesive to dentin[J]. J Adhes Dent, 2019, 21(1): 77-85.
[31] Nikaido T, Takagaki T, Sato T, et al. The concept of super enamel formation-relationship between chemical interaction and enamel acid-base resistant zone at the self-etch adhesive/enamel interface[J]. Dent Mater J, 2020, 39(4): 534-538.
[32] Nakamoto A, Sato T, Matsui N, et al. Effect of fluoride mouthrinse and fluoride concentration on bon-ding of a one-step self-etch adhesive to bovine root dentin[J]. J Oral Sci, 2019, 61(1): 125-132.
[33] Sato T, Nikaido T, Takagaki T, et al. Influence of primer contamination on the bonding interface of enamel pre-etched with phosphoric acid[J]. Dent Mater J, 2021, 40(5): 1086-1093.
[34] Kirihara M, Inoue G, Nikaido T, et al. Effect of fluoride concentration in adhesives on morphology of acid-base resistant zones[J]. Dent Mater J, 2013, 32(4): 578-584.
[35] Nikaido T, Ichikawa C, Li N, et al. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone[J]. Dent Mater J, 2011, 30(5): 576-582.
[36] Aung SSMP, Takagaki T, Ikeda M, et al. Ultra-morphological studies on enamel-universal adhesive interface[J]. J Dent, 2021, 104: 103527.
[37] Yoshihara K, Nagaoka N, Nakamura A, et al. Nano-layering adds strength to the adhesive interface[J]. J Dent Res, 2021, 100(5): 515-521.
[1] Shiya Wang,Guohua Yuan,Jing Zou. The formation mechanism, clinical diagnosis, and treatment strategies of ectopic enamel [J]. Int J Stomatol, 2025, 52(6): 713-721.
[2] Axuan Chen,Wenyu Dai,Xianglong Han. Research progress on antibacterial-remineralizing materials for dental enamel [J]. Int J Stomatol, 2025, 52(5): 606-613.
[3] Kai Hu,Yanxiao Zhang,Bingyong Mao,Xin Tang,Yueyan Wang,Yue Pan,Qiuxiang Zhang,Shumao Cui. Relationship between enamel demineralization and oral microbiota with secretory immunoglobulin A in adolescent orthodontic patients [J]. Int J Stomatol, 2025, 52(5): 614-620.
[4] Wang Nannan,He Hong,Hua Fang. Research progress on the risk factors of orthodontically induced enamel demineralization [J]. Int J Stomatol, 2024, 51(1): 91-98.
[5] Wang Gang,Chen Zhuo.. Reduction of the risk of caries after interproximal enamel reduction [J]. Int J Stomatol, 2023, 50(4): 395-400.
[6] Lei Bin,Chen Ke. Classification and treatment of dentin dysplasia type[J]. Int J Stomatol, 2022, 49(3): 332-336.
[7] Li Yanfei,Zhang Xinchun. Research progress on the dentin bone repair material [J]. Int J Stomatol, 2022, 49(2): 197-203.
[8] Ding Jingyu,Tian Zilu,Wang Huimin,Zhu Xuanyan,Yang Yubin,Zhu Song. Advancement of immediate dentin sealing [J]. Int J Stomatol, 2022, 49(1): 121-124.
[9] Zhang Shan,Shen Shuping,Zhang Fang,Yang Weidong. Effect of photon-initiated photoacoustic streaming Er: YAG laser on the water loss of dentin and compressive strength of root [J]. Int J Stomatol, 2022, 49(1): 55-59.
[10] He Rong,Liu Xuejun,Zhou Yukun. Systematic review on the effect of photon-initiated photoacoustic streaming in endodontic irrigation [J]. Int J Stomatol, 2021, 48(6): 644-655.
[11] Meng Shuhuai,Luo Feng,Pei Xibo,Wan Qianbing. Research status on congenital syphilitic teeth [J]. Int J Stomatol, 2021, 48(4): 439-443.
[12] Zhao Binbin,Zhong Weijian,Ma Guowu. Research progress on dentin as bone transplantation material [J]. Int J Stomatol, 2021, 48(1): 82-89.
[13] Liu Enyan,Li Mingyun. Research progress on tea polyphenols in dentin adhesion [J]. Int J Stomatol, 2020, 47(6): 732-738.
[14] Qing Ping,Gao Shanshan,Qian Linmao,Yu Haiyang. Microtribological behaviour of human tooth enamel treated by gamma irradiation [J]. Int J Stomatol, 2020, 47(2): 189-195.
[15] Yu Xiaohong,Liu Yu,Zeng Lian,Yang Yanling,Wang Zhou,Li Wei. Effects of enamel matrix derivative on proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(1): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!