Int J Stomatol ›› 2026, Vol. 53 ›› Issue (2): 274-280.doi: 10.7518/gjkq.2026115

• Reviews • Previous Articles    

Current status of bone immunomodulation of macrophage behavior mediated by the surface morphology of bionic porous titanium implants

Mingxuan Yu1(),Ruyi He1,Rongzeng Yan1,2()   

  1. 1.Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
    2.Engineering Research Center for Clinical Application of Advanced Manufacturing Technology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
  • Received:2025-01-19 Revised:2025-10-19 Online:2026-03-01 Published:2026-02-13
  • Contact: Rongzeng Yan E-mail:ymx2656976326@163.com;yanrongzeng@fzmu.edu.cn
  • Supported by:
    Key Project of Science and Technology Research of Jiangxi Provincial Department of Education(GJJ2203401);Jiangxi Provincial Natural Science Foundation Funded Project(20252BAC240567);Key Research and Development Program of Fuzhou Science and Technology Plan Project(2021DB005)

Abstract:

Implantation of titanium implants into the organism induces an immune-inflammatory response from the host. The course of this procedure affects the repair and regeneration of bone tissues. Macrophage-centered bone immunomodulation has received considerable attention in recent years. The surface morphology of bionic porous titanium implants can modulate the biological behavior of macrophages in their surrounding immune microenvironment, which promotes angiogenesis and accelerates bone remodeling. This study describes the role of macrophages in the immune response after implantation of porous titanium bionic implants and the capability of macrophages to modulate bone immunity after surface treatment. Specifically, the effect of the design of porous bionic surface structures on the biological beha-vior of macrophages is investigated. In-depth understanding of titanium implant-organism interface interactions provides new ideas for clinical bionic design and preparation of porous titanium implants with immunomodulatory functions.

Key words: titanium implants, bionics design, surfa-ce topography, macrophage, osteoimmunomodulation

CLC Number: 

  • R783.1

TrendMD: 

Tab 1

Study on the effect of different morphologies on the biological properties of macrophages after surface treatment of titanium implants"

作者发表时间/年制作工艺处理方法特性结果及应用意义
物理化学
Yang等[11]2021SLM对钛片进行喷砂、大颗粒酸蚀和碱热反应处理粗糙度润湿性-经处理构建的微纳米形貌提高亲水性,促进细胞增殖和巨噬细胞向M2表型极化,促使细胞增殖和M2型巨噬细胞极化,从而发挥局部微环境的抗炎作用
Razzi等[12]2020SLM表面生物功能化的等离子体电解氧化与含/不含银纳米粒子粗糙度生物活性物质未经处理的多孔钛在巨噬细胞中产生强促炎反应,等离子体电解氧化处理的多孔钛显示更高的诱导巨噬细胞向抗炎表型极化的潜力。然而,含银纳米颗粒的掺入对附着的巨噬细胞有强细胞毒性
Liu等[13]2021AM利用阳极氧化在钛合金/含铜钛合金表面制备纳米管粗糙度化学成分TNT-TC4-5Cu合金在无LPS刺激和有LPS刺激时均能抑制巨噬细胞极化,减少活性氧生成,从而促进成骨细胞的增殖和黏附
Zhao等[14]2021SLM在N2中进行后处理使钛合金植入物表面形成均匀致密的氮化涂层粗糙度生物活性物质氮化物涂层协同表面纹理使Arg-1和甘露糖受体表达阳性的M2型细胞比例显著升高,促进巨噬细胞极化为抗炎型
Li等[15]2022SLM利用水热处理在TC4表面制备球形SrTiO3颗粒纳米结构粗糙度生物活性物质在含锶微/纳米结构表面培养的巨噬细胞向抗炎M2表型极化,并增强成骨生长因子的表达
Wang等[16]2022SLM构建3D打印Ti6Al4V-SF复合支架,以Mg作为金属有机骨架材料在其表面负载淫羊藿苷中药-生物活性物质支架控释淫羊藿苷和Mg2+可通过抑制notch1信号通路,使巨噬细胞向M2型分化,诱导抗炎细胞因子的分泌,显著改善骨代谢,有助于改善支架的骨结合
Wang等[17]2022DMLS制备3D打印Ti6Al4V和透明质酸/壳聚糖混合水凝胶复合支架-生物活性物质支架周围的水凝胶持续释放内源性生长因子和细胞因子,通过同时促使巨噬细胞向M2型极化和人骨髓间充质干细胞成骨向分化,调节促再生免疫微环境,加速骨再生
Wu等[18]2023SLM铜、锶离子与天然聚合物结合修饰种植体表面-生物活性物质铜、锶离子促使巨噬细胞分泌促骨生成因子,诱导成骨,表现出免疫调节成骨的作用
Wu等[19]2023EBM利用水热处理形成BaTiO3涂层修饰支架表面-生物活性物质极化压电BaTiO3/Ti6Al4V(BT/Ti)支架的压电效应促进巨噬细胞M2极化和小鼠胚胎成骨细胞前体细胞的免疫调节成骨。压电BT/Ti(极性)支架抑制炎症性丝裂原活化蛋白激酶/应激活化蛋白激酶信号级联,激活巨噬细胞氧化磷酸化和腺嘌呤核苷三磷酸合成

Fig 1

Modulation of macrophage-contributing bone mechanism after implantation of bionic porous titanium implants with different surface morphologies: a map"

[1] Zhang LC, Chen LY. A review on biomedical tita-nium alloys: recent progress and prospect[J]. Adv Eng Mater, 2019, 21(4): 1801215.
[2] Xiao F, Ye JH, Huang CX, et al. Gradient gyroid Ti6Al4V scaffolds with TiO2 surface modification: promising approach for large bone defect repair[J]. Biomater Adv, 2024, 161: 213899.
[3] Wang ZH, Zhang M, Liu ZW, et al. Biomimetic design strategy of complex porous structure based on 3D printing Ti-6Al-4V scaffolds for enhanced osseointegration[J]. Mater Des, 2022, 218: 110721.
[4] Lee J, Byun H, Perikamana SKM, et al. Current advances in immunomodulatory biomaterials for bone regeneration[J]. Adv Healthc Mater, 2019, 8(4): e1801106.
[5] Davenport Huyer L, Pascual-Gil S, Wang YF, et al. Advanced strategies for modulation of the mate-rial-macrophage interface[J]. Adv Funct Materials, 2020, 30(44): 1909331.
[6] Zhu YZ, Liang H, Liu XM, et al. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration[J]. Sci Adv, 2021, 7(14): eabf6654.
[7] Liu Y, Rui ZY, Cheng W, et al. Characterization and evaluation of a femtosecond laser-induced osseointegration and an anti-inflammatory structure genera-ted on a titanium alloy[J]. Regen Biomater, 2021, 8(2): rbab006.
[8] Xia Y, He XT, Xu XY, et al. Exosomes derived from M0, M1 and M2 macrophages exert distinct in-fluences on the proliferation and differentiation of mesenchymal stem cells[J]. PeerJ, 2020, 8: e8970.
[9] Amengual-Peñafiel L, Córdova LA, Jara-Sepúlveda MC, et al. Osteoimmunology drives dental implant osseointegration: a new paradigm for implant dentistry[J]. Jpn Dent Sci Rev, 2021, 57: 12-19.
[10] Ji ZB, Wan Y, Wang HW, et al. Effects of surface morphology and composition of titanium implants on osteogenesis and inflammatory responses: a review[J]. Biomed Mater, 2023, 18(4). doi: 10.1088/1748-605X/acd976 .
doi: 10.1088/1748-605X/acd976
[11] Yang Y, Zhang T, Jiang MY, et al. Effect of the immune responses induced by implants in a integrated three-dimensional micro-nano topography on osseointegration[J]. J Biomed Mater Res A, 2021, 109(8): 1429-1440.
[12] Razzi F, Fratila-Apachitei LE, Fahy N, et al. Im-munomodulation of surface biofunctionalized 3D printed porous titanium implants[J]. Biomed Mater, 2020, 15(3): 035017.
[13] Liu ZG, Liu Y, Liu S, et al. The effects of TiO2 nanotubes on the biocompatibility of 3D printed Cu-bea-ring TC4 alloy[J]. Mater Des, 2021, 207: 109831.
[14] Zhao XY, Wang BB, Lai WJ, et al. Improved tribological properties, cyto-biocompatibility and anti-inflammatory ability of additive manufactured Ti-6Al-4V alloy through surface texturing and nitriding[J]. Surf Coat Technol, 2021, 425: 127686.
[15] Li G, Liu WT, Liang LX, et al. Preparing Sr-contai-ning nano-structures on micro-structured titanium alloy surface fabricated by additively manufactu-ring to enhance the anti-inflammation and osteoge-nesis[J]. Colloids Surf B Biointerfaces, 2022, 218: 112762.
[16] Wang W, Xiong YZ, Zhao RL, et al. A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation[J]. J Nanobiotechnology, 2022, 20(1): 68.
[17] Wang YP, Feng ZJ, Liu X, et al. Titanium alloy composited with dual-cytokine releasing polysaccharide hydrogel to enhance osseointegration via osteogenic and macrophage polarization signaling pathways[J]. Regen Biomater, 2022, 9: rbac003.
[18] Wu YP, Shi XW, Wang JJ, et al. A surface metal ion-modified 3D-printed Ti-6Al-4V implant with direct and immunoregulatory antibacterial and osteogenic activity[J]. Front Bioeng Biotechnol, 2023, 11: 1142264.
[19] Wu H, Dong H, Tang Z, et al. Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds pro-motes anti-inflammatory polarization of macropha-ges and bone repair via MAPK/JNK inhibition and OXPHOS activation[J]. Biomaterials, 2023, 293: 121990.
[20] Li JX, Zhong HZ, Cao BJ, et al. Comparative study of 3D-printed porous titanium alloy with rod designs of three different geometric structures for orthopaedic implantation[J]. Acta Metall Sin Engl Lett, 2024, 37(1): 54-66.
[21] Pei X, Wang LN, Zhou CC, et al. Ti6Al4V orthopedic implant with biomimetic heterogeneous structure via 3D printing for improving osteogenesis[J]. Mater Des, 2022, 221: 110964.
[22] Liang HX, Yang YW, Xie DQ, et al. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility[J]. J Mater Sci Technol, 2019, 35(7): 1284-1297.
[23] Pei X, Wu LN, Zhou CC, et al. 3D printed titanium scaffolds with homogeneous diamond-like structures mimicking that of the osteocyte microenvironment and its bone regeneration study[J]. Biofabrication, 2020, 13(1). doi: 10.1088/1758-5090/abc060 .
doi: 10.1088/1758-5090/abc060
[24] Zhang YN, Sun N, Zhu MR, et al. The contribution of pore size and porosity of 3D printed porous tita-nium scaffolds to osteogenesis[J]. Biomater Adv, 2022, 133: 112651.
[25] Liu QY, Wei F, Coathup M, et al. Effect of porosity and pore shape on the mechanical and biological properties of additively manufactured bone scaffolds[J]. Adv Healthc Mater, 2023, 12(30): e2301111.
[26] Liu Y, Cao LY, Zhang S, et al. Effect of hierarchical porous scaffold on osteoimmunomodulation and bone formation[J]. Appl Mater Today, 2020, 20: 100779.
[27] Wang C, Wu J, Liu LY, et al. Improving osteoinduction and osteogenesis of Ti6Al4V alloy porous scaffold by regulating the pore structure[J]. Front Chem, 2023, 11: 1190630.
[28] Wu YQ, Liu Z, Xu ZC, et al. Macrophage responses to selective laser-melted Ti-6Al-4V scaffolds of different pore geometries and the corresponding osteoimmunomodulatory effects toward osteogenesis[J]. J Biomed Mater Res A, 2022, 110(4): 873-883.
[29] Deng FY, Liu LL, Li Z, et al. 3D printed Ti6Al4V bone scaffolds with different pore structure effects on bone ingrowth[J]. J Biol Eng, 2021, 15(1): 4.
[30] Zhao HY, Han YF, Pan C, et al. Design and mecha-nical properties verification of gradient voronoi scaffold for bone tissue engineering[J]. Micromachines (Basel), 2021, 12(6): 664.
[31] Feng JW, Fu JZ, Yao XH, et al. Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications[J]. Int J Extreme Manuf, 2022, 4(2): 022001.
[32] He YD, Li Z, Ding X, et al. Nanoporous titanium implant surface promotes osteogenesis by suppres-sing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway[J]. Bioact Mater, 2021, 8: 109-123.
[33] Dai XH, Bai YY, Heng BC, et al. Biomimetic hierarchical implant surfaces promote early osseointegration in osteoporotic rats by suppressing macrophage activation and osteoclastogenesis[J]. J Mater Chem B, 2022, 10(11): 1875-1885.
[34] Zhou Y, Tang CZ, Deng JL, et al. Micro/nano topography of selective laser melting titanium inhibits osteoclastogenesis via mediation of macrophage pola-rization[J]. Biochem Biophys Res Commun, 2021, 581: 53-59.
[1] Pawuziya Abulizi,Haonan Zou,Hao Dong,Aimin Cui,Yuezhang Sun,Qi Wang. Low-level laser therapy for hyperglycemia-associated inflammatory senescence in macrophages [J]. Int J Stomatol, 2026, 53(2): 176-188.
[2] Zekai Xu,Wenzhi Wu,Zhuo Chen. Progress in the study of cellular interactions between dental pulp mesenchymal stem cells and macrophages [J]. Int J Stomatol, 2026, 53(1): 36-42.
[3] Liu Yi,Liu Yi.. Research progress on the regulation of bone remodeling by macrophage-derived exosomes [J]. Int J Stomatol, 2023, 50(1): 120-126.
[4] Huang Weikun,Xu Qiuyan,Zhou Ting.. Role of baicalin and mechanisms through which baicalin attenuates oxidative stress injury induced by lipopolysaccharide on macrophages [J]. Int J Stomatol, 2022, 49(5): 521-528.
[5] Zhao Yujie,Guan Xiaoyan,Li Xiaolan,Chen Qijun,Wang Qian,Liu Jianguo. Research progress on macrophage polarization involved in the regulation of orthodontic tooth movement [J]. Int J Stomatol, 2020, 47(4): 478-483.
[6] Liu Ye,Hong Rundan,Wang Zhiguo,Liu Hanyun,Meng Chenda,Wang Ru,Xu Quanchen. Comparison of polarization characteristics of human monocyte cell- and peripheral blood mononuclear cell-derived macrophages [J]. Int J Stomatol, 2020, 47(3): 286-292.
[7] Zhu Chenyou, Wei Shimin, Wang Yuanjing, Wu Yingying.. Research progress on macrophage in bone tissue repair [J]. Inter J Stomatol, 2018, 45(4): 444-448.
[8] Lin Dongjia, Peng Zhixiang, Gao Yan.. Progress in the interactive mechanism between Enterococcus faecalis and macrophages [J]. Inter J Stomatol, 2018, 45(4): 433-438.
[9] Huang Yuehua, Tang Xiaolin. Research progress on the relationship between monocytes phagocyte system and periodontitis [J]. Inter J Stomatol, 2017, 44(5): 528-532.
[10] Pan Jiahui, Tang Qiuling, Li Gege, Hou Yubo, Yu Weixian. The role of macrophages polarization in the onset and development of periodontitis via Porphyromonas gingivalis [J]. Inter J Stomatol, 2017, 44(5): 533-537.
[11] Zheng Wenlong, Zou Duohong, Chen Qiaoer. Regulatory effect of macrophages in angiogenesis and tissue engineering [J]. Inter J Stomatol, 2016, 43(1): 108-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!