Int J Stomatol ›› 2021, Vol. 48 ›› Issue (3): 322-328.doi: 10.7518/gjkq.2021051
• Reviews • Previous Articles Next Articles
CLC Number:
[1] |
Zheng YF, Gu XN, Witte F. Biodegradable metals[J]. Mater Sci Eng: R: Rep, 2014,77:1-34.
doi: 10.1016/j.mser.2014.01.001 |
[2] |
Ali M, Hussein MA, Al-Aqeeli N. Magnesium-based composites and alloys for medical applications: a review of mechanical and corrosion properties[J]. J Alloy Compd, 2019,792:1162-1190.
doi: 10.1016/j.jallcom.2019.04.080 |
[3] |
Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review[J]. Biomaterials, 2006,27(9):1728-1734.
pmid: 16246414 |
[4] | Eliaz N, Metoki N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications[J]. Materials (Basel), 2017,10(4):E334. |
[5] |
Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2003,12(1):35-39.
doi: 10.1067/mse.2003.22 |
[6] |
Munir K, Lin JX, Wen CE, et al. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications[J]. Acta Biomater, 2020,102:493-507.
doi: 10.1016/j.actbio.2019.12.001 |
[7] |
Ali M, Elsherif M, Salih AE, et al. Surface modification and cytotoxicity of Mg-based bio-alloys: an overview of recent advances[J]. J Alloy Compd, 2020,825:154140.
doi: 10.1016/j.jallcom.2020.154140 |
[8] |
Saris NE, Mervaala E, Karppanen H, et al. Magnesium. An update on physiological, clinical and analytical aspects[J]. Clin Chim Acta, 2000,294(1/2):1-26.
doi: 10.1016/S0009-8981(99)00258-2 |
[9] |
Charyeva O, Dakischew O, Sommer U, et al. Biocompatibility of magnesium implants in primary human reaming debris-derived cells stem cells in vitro[J]. J Orthop Traumatol, 2016,17(1):63-73.
doi: 10.1007/s10195-015-0364-9 pmid: 26153416 |
[10] |
Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006,27(7):1013-1018.
doi: 10.1016/j.biomaterials.2005.07.037 |
[11] |
Dorozhkin SV. Calcium orthophosphates[J]. J Mater Sci, 2007,42(4):1061-1095.
doi: 10.1007/s10853-006-1467-8 |
[12] |
Amberg R, Elad A, Beuer F, et al. Effect of physical cues of altered extract media from biodegradable magnesium implants on human gingival fibroblasts[J]. Acta Biomater, 2019,98:186-195.
doi: S1742-7061(19)30502-1 pmid: 31352109 |
[13] |
Kiani F, Wen CE, Li YC. Prospects and strategies for magnesium alloys as biodegradable implants from cry-stalline to bulk metallic glasses and composites-a review[J]. Acta Biomater, 2020,103:1-23.
doi: 10.1016/j.actbio.2019.12.023 |
[14] |
Pacha-Olivenza MA, Galván JC, Porro JA, et al. Efficacy of Laser shock processing of biodegradable Mg and Mg-1Zn alloy on their in vitro corrosion and bacterial response[J]. Surf Coat Technol, 2020,384:125320.
doi: 10.1016/j.surfcoat.2019.125320 |
[15] | Pogorielov M, Husak E, Solodivnik A, et al. Magnesium-based biodegradable alloys: degradation, application, and alloying elements[J]. Interv Med Appl Sci, 2017,9(1):27-38. |
[16] |
Myrissa A, Agha NA, Lu YY, et al. In vitro and in vivo comparison of binary Mg alloys and pure Mg[J]. Mater Sci Eng C Mater Biol Appl, 2016,61:865-874.
doi: 10.1016/j.msec.2015.12.064 |
[17] |
Atrens A, Johnston S, Shi ZM, et al. Viewpoint-understanding Mg corrosion in the body for biodegradable medical implants[J]. Scr Mater, 2018,154:92-100.
doi: 10.1016/j.scriptamat.2018.05.021 |
[18] |
Riaz U, Rahman ZU, Asgar H, et al. An insight into the effect of buffer layer on the electrochemical performance of MgF2 coated magnesium alloy ZK60[J]. Surf Coat Technol, 2018,344:514-521.
doi: 10.1016/j.surfcoat.2018.03.081 |
[19] |
Lu XZ, Lai CP, Chan LC. Novel design of a coral-like open-cell porous degradable magnesium implant for orthopaedic application[J]. Mater Des, 2020,188:108474.
doi: 10.1016/j.matdes.2020.108474 |
[20] |
Kuhlmann J, Bartsch I, Willbold E, et al. Fast escape of hydrogen from gas cavities around corroding magnesium implants[J]. Acta Biomater, 2013,9(10):8714-8721.
doi: 10.1016/j.actbio.2012.10.008 pmid: 23069319 |
[21] |
Liu XW, Sun JK, Zhou FY, et al. Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application[J]. Mater Des, 2016,94:95-104.
doi: 10.1016/j.matdes.2015.12.128 |
[22] |
Prabhu DB, Gopalakrishnan P, Ravi KR. Coatings on implants: study on similarities and differences between the PCL coatings for Mg based lab coupons and final components[J]. Mater Des, 2017,135:397-410.
doi: 10.1016/j.matdes.2017.09.043 |
[23] |
Chen CX, Chen JH, Wu W, et al. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy[J]. Biomaterials, 2019,221:119414.
doi: 10.1016/j.biomaterials.2019.119414 |
[24] |
Sezer N, Evis Z, Kayhan SM, et al. Review of magnesium-based biomaterials and their applications[J]. J Magnes Alloy, 2018,6(1):23-43.
doi: 10.1016/j.jma.2018.02.003 |
[25] |
Agarwal S, Curtin J, Duffy B, et al. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface mo-difications[J]. Mater Sci Eng C Mater Biol Appl, 2016,68:948-963.
doi: 10.1016/j.msec.2016.06.020 |
[26] |
Zhang BP, Hou YL, Wang XD, et al. Mechanical pro-perties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions[J]. Mater Sci Eng: C, 2011,31(8):1667-1673.
doi: 10.1016/j.msec.2011.07.015 |
[27] |
Perl DP, Moalem S. Aluminum, Alzheimer’s disease and the geospatial occurrence of similar disorders[J]. Rev Mineral Geochem, 2006,64(1):115-134.
doi: 10.2138/rmg.2006.64.4 |
[28] |
Cihova M, Martinelli E, Schmutz P, et al. The role of zinc in the biocorrosion behavior of resorbable Mg-Zn-Ca alloys[J]. Acta Biomater, 2019,100:398-414.
doi: S1742-7061(19)30633-6 pmid: 31539653 |
[29] |
Dargusch MS, Balasubramani N, Venezuela J, et al. Improved biodegradable magnesium alloys through advanced solidification processing[J]. Scr Mater, 2020,177:234-240.
doi: 10.1016/j.scriptamat.2019.10.028 |
[30] |
Li P, Dai JT, Schweizer E, et al. Response of human periosteal cells to degradation products of zinc and its alloy[J]. Mater Sci Eng C Mater Biol Appl, 2020,108:110208.
doi: 10.1016/j.msec.2019.110208 |
[31] |
Yuan W, Li B, Chen DF, et al. Formation mechanism, corrosion behavior, and cytocompatibility of microarc oxidation coating on absorbable high-purity zinc[J]. ACS Biomater Sci Eng, 2019,5(2):487-497.
doi: 10.1021/acsbiomaterials.8b01131 pmid: WOS:000458937900011 |
[32] |
Yang HT, Qu XH, Lin WJ, et al. Enhanced osseointegration of Zn-Mg composites by tuning the release of Zn ions with sacrificial Mg-rich anode design[J]. ACS Biomater Sci Eng, 2019,5(2):453-467.
doi: 10.1021/acsbiomaterials.8b01137 |
[33] |
Wu GS, Ibrahim JM, Chu PK. Surface design of biodegradable magnesium alloys: a review[J]. Surf Coat Technol, 2013,233:2-12.
doi: 10.1016/j.surfcoat.2012.10.009 |
[34] |
Mukhametkaliyev TM, Surmeneva MA, Vladescu A, et al. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance[J]. Mater Sci Eng C Mater Biol Appl, 2017,75:95-103.
doi: S0928-4931(16)31473-4 pmid: 28415551 |
[35] | Cao NQ, Le HM, Pham KM, et al. In vitro corrosion and cell response of hydroxyapatite coated Mg matrix in situ composites for biodegradable material applications[J]. Materials (Basel), 2019,12(21):E3474. |
[36] |
Ma LY, Niu J. In vitro biocorrosion and biocompatibility of AZ31 modified with magnesium phosphate coating by chemical deposition[J]. Surfaces Interfaces, 2019,14:208-214.
doi: 10.1016/j.surfin.2018.12.006 |
[37] |
Tian QM, Lin JJ, Rivera-Castaneda L, et al. Nano-to-submicron hydroxyapatite coatings for magnesium-based bioresorbable implants-deposition, characterization, degradation, mechanical properties, and cytocompatibility[J]. Sci Rep, 2019,9:810.
doi: 10.1038/s41598-018-37123-3 |
[38] |
Webster TJ, Ergun C, Doremus RH, et al. Enhanced functions of osteoblasts on nanophase ceramics[J]. Biomaterials, 2000,21(17):1803-1810.
pmid: 10905463 |
[39] | Narayana PS, Srihari PV. Biofilm resistant surfaces and coatings on implants: a review[J]. Mater Today: Proc, 2019,18:4847-4853. |
[40] |
Webster TJ, Ergun C, Doremus RH, et al. Increased osteoblast adhesion on titanium-coated hydroxylapatite that forms CaTiO3[J]. J Biomed Mater Res A, 2003,67(3):975-980.
pmid: 14613247 |
[41] | Hacking SA, Tanzer M, Harvey EJ, et al. Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings[J]. Clin Orthop Relat Res, 2002(405):24-38. |
[42] |
Liddell RS, Liu ZM, Mendes VC, et al. Relative contributions of implant hydrophilicity and nanotopography to implant anchorage in bone at early time points[J]. Clin Oral Implants Res, 2020,31(1):49-63.
doi: 10.1111/clr.13546 pmid: 31566254 |
[43] |
Saberi A, Bakhsheshi-Rad HR, Karamian E, et al. Magnesium-graphene nano-platelet composites: corrosion behavior, mechanical and biological properties[J]. J Alloy Compd, 2020,821:153379.
doi: 10.1016/j.jallcom.2019.153379 |
[44] |
Riaz U, Shabib I, Haider W. The current trends of Mg alloys in biomedical applications‒a review[J]. J Biomed Mater Res Part B Appl Biomater, 2019,107(6):1970-1996.
doi: 10.1002/jbm.b.v107.6 |
[45] |
Witte F. The history of biodegradable magnesium implants: a review[J]. Acta Biomater, 2010,6(5):1680-1692.
doi: 10.1016/j.actbio.2010.02.028 |
[46] |
Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005,26(17):3557-3563.
pmid: 15621246 |
[47] |
Waizy H, Diekmann J, Weizbauer A, et al. In vivo study of a biodegradable orthopedic screw (MgYR-EZr-alloy) in a rabbit model for up to 12 months[J]. J Biomater Appl, 2014,28(5):667-675.
doi: 10.1177/0885328212472215 |
[48] |
Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomed Eng Online, 2013,12:62.
doi: 10.1186/1475-925X-12-62 pmid: 23819489 |
[49] |
Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties[J]. J Prosthodont, 2006,15(5):321-328.
doi: 10.1111/jopr.2006.15.issue-5 |
[50] |
Sugawara A, Fujikawa K, Kusama K, et al. Histopathologic reaction of a calcium phosphate cement for alveolar ridge augmentation[J]. J Biomed Mater Res, 2002,61(1):47-52.
doi: 10.1002/(ISSN)1097-4636 |
[51] |
Fujikawa K, Sugawara A, Kusama K, et al. Fluorescent labeling analysis and electron probe microanalysis for alveolar ridge augmentation using calcium phosphate cement[J]. Dent Mater J, 2002,21(4):296-305.
pmid: 12608419 |
[52] |
Comuzzi L, Ooms E, Jansen JA. Injectable calcium phosphate cement as a filler for bone defects around oral implants: an experimental study in goats[J]. Clin Oral Implants Res, 2002,13(3):304-311.
doi: 10.1034/j.1600-0501.2002.130311.x |
[53] |
Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial[J]. Lancet, 2007,369(9576):1869-1875.
doi: 10.1016/S0140-6736(07)60853-8 |
[54] |
Wang J, Giridharan V, Shanov V, et al. Flow-induced corrosion behavior of absorbable magnesium-based stents[J]. Acta Biomater, 2014,10(12):5213-5223.
doi: 10.1016/j.actbio.2014.08.034 |